Answer:
F' = (4/9)F
Explanation:
The electrostatic force between two charged objects is given by Coulomb's Law:
F = kq₁q₂/r² -------------------- equation (1)
where,
F = Electrostatic Force
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of second charge
r = distance between charges
Now, when the charges and distance altered as follows:
q₁' = 2q₁
q₂' = 2q₂
r' = 3r
Then,
F' = kq₁'q₂'/r'²
F' = k(2q₁)(2q₂)/(3r)²
F' = (4/9)kq₁q₂/r²
using equation (1):
<u>F' = (4/9)F</u>
Answer:
The value is 
Explanation:
From the question we are told that
The speed of the rope with hook is
The angle is 
The speed at which it hits top of the wall is 
Generally from kinematic equation we have that

Here h is the height of the wall so
![[16.3 sin (65)]^2 = [24.1 sin (65)] ^2+ 2 (-9.8)* h](https://tex.z-dn.net/?f=%5B16.3%20sin%20%2865%29%5D%5E2%20%3D%20%20%5B24.1%20sin%20%2865%29%5D%20%5E2%2B%20%20%202%20%28-9.8%29%2A%20h)
=> 
Answer:
180 Newton(N)
Explanation:
force =mass *acceleration
=60 * 3
=180 kgm/s^2
=180 N
Answer: The common difference between surface EMG and intramuscular EMG is that that former is non-invasive while the later is an invasive method
Explanation:
Electromyography (EMG) is used clinically for the examination of muscle excitations (muscle electrical activity) in both normal or abnormal conditions. There are two forms of EMG includes:
--> Surface EMT and
--> Intramuscular EMT
Surface EMT is a non invasive method of examination of muscle excitations for superficial and easily accessible muscles.
Intramuscular EMT is the invasive method of examination of muscle excitations usually for deep muscles.
The difference between the two forms of EMT includes:
- surface EMT is non- invasive while intramuscular EMT is invasive
- surface EMT is used to access superficial muscle while intramuscular EMT is used to access deep muscles.
- surface EMT requires less skill and time to carry out while intramuscular EMT requires special skills and takes more time while carrying out the procedure.
Answer:
Its d
atome contain
negative electrons,
positive protons and uncharged neutrons.
Explanation: