Answer: P = 0.416 kW
Explanation:
taken a step by step process to solving this problem.
we have that from the question;
the amount of heat rejected Qn = 4800 kJ/h
the cooling effect is Ql = 3300 kJ/h
Applying the first law of thermodynamics for this system gives us
Шnet = Qn -Ql
Шnet = 4800 - 3300 = 1500 kJ/h
Next we would calculate the coefficient of performance of the refrigerator;
COPr = Desired Effect / work output = Ql / Шnet = 3300/1500 = 2.2
COPr = 2.2
The Power as required gives;
P = Qn - Ql = 4800 - 3300 = 1500 kJ/h = 0.416
P = 0.416 kW
cheers i hope this helps!!!!1
Answer:
Writing an excellent problem statement will not help guide you through the rest of the process and steer you towards the BEST solution.
False
Explanation:
An excellent problem statement sets the overall tone for the rest of the engineering process, whether it be at the analysis, design, or implementation stages. This is why a problem statement must be focused, clear, and specific. An excellent problem statement contains the problem definition, method for solving the problem (the claim proposed), purpose, statement of objectives, and scope. For an excellent problem statement to be effective, it must also show the gap that is to be closed to achieve the intended objective.
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.