Answer: The engineer will create a detailed sketch that labels all of the visual components.
Explanation:
It should be noted that the reverse engineering is required for the replacement and the modification of an existing product.
With regards to the question, the correct answer is option A "The engineer will create a detailed sketch that labels all of the visual components".
Answer:
,
, ![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
Explanation:
Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:




The following relation are found:

The new relationship is determined by means of linear interpolation:


After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:


![v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1 \right)\cdot x \right]^{-1}](https://tex.z-dn.net/?f=v%20%28x%29%20%3D%20v_%7Bin%7D%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%5Ccdot%20x%20%5Cright%5D%5E%7B-1%7D)
The acceleration can be calculated by using the following derivative:

The derivative of the velocity in terms of position is:
![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.
Answer:
The answer is False.
Explanation:
When it comes to occupational safety,<em> it is very important for ladders to be inspected by a qualified person before each use.</em> This is because ladders undergo conditions that impact their integrity while being in use. The inspection is also essential in order for the ladder to be timely replaced.
<u><em>Ladder accidents or ladder-related injuries happen every year.</em></u> Around 700 occupational deaths due to elevated fall from a ladder accounts for 15% of all occupational deaths. Misuse or damage ladders are often the reasons for this.
Thus, the answer in the above statement is False because ladders are required to be inspected for visible defects prior to the first use of each work shift and after any occurrence that could affect their safety.
Answer:
the heat loss from this insulated wire is less
Explanation:
Given data in question
diameter of cable (d) = 20 mm
( K ) = 1 W/m-k
heat transfer coefficient (h) = 50 W/m²-K
To find out
the heat loss from this insulated wire
solution
we will find out thickness of wire
heat loss is depend on wire thickness also
we have given dia 20 mm
so radius will be d/2 = 20/ 2 = 10 mm
Now we find the critical thickness i.e.
critical thickness = K / heat transfer coefficient
critical thickness = 1 / 50 = 0.02 m i.e. 20 mm
now we can see that critical thickness is greater than radius 10 mm
so our rate of heat loss will be decreasing
so we can say our correct option is (a) less