Answer:
See explaination
Explanation:
2. 0-1 km shear value: taking winds at 1000mb and 850 mb
15 kts south easterly and 50 kts southerly
Vector difference 135/15 and 180/50 will be 170/61 or southerly 61 kts
3. 0-6 km shear value: taking winds at 1000 mb and 500 mb
15 kts south easterly and 40 kts westerly
Vector difference 135/15 and 270/40 will be 281/51 kts
please see attachment
Answer:
The minimum volume requirement for the granite stones is 1543.64 cm³
Explanation:
1 granite stone weighs 10 denarium
100 granted stones will weigh 1000 denarium
1 denarium = 3.396g
1000 denarium = 3396g.
But we're told that 20% of material is lost during the making of these stones.
This means the mass calculated represents 80% of the original mass requirement, m.
80% of m = 3396
m = 3396/0.8 = 4425 g
This mass represents the minimum mass requirement for making the stones.
To now obtain the corresponding minimum volume requirement
Density = mass/volume
Volume = mass/density = 4425/2.75 = 1543.64 cm³
Hope this helps!!!
I think that it is all of the above
Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.
Answer : The final velocity of the ball is, 12.03 m/s
Explanation :
By the 3rd equation of motion,

where,
s = distance covered by the object = 6.93 m
u = initial velocity = 2.99 m/s
v = final velocity = ?
a = acceleration = 
Now put all the given values in the above equation, we get the final velocity of the ball.


Thus, the final velocity of the ball is, 12.03 m/s