Answer:
a) Q = 251.758 kJ/mol
b) creep rate is 
Explanation:
we know Arrhenius expression is given as

where
Q is activation energy
C is pre- exponential constant
At 700 degree C creep rate is
% per hr
At 800 degree C creep rate is
% per hr
activation energy for creep is
= 
![\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%5C%25%7D%7B5.5%20%5Ctimes%2010%5E%7B-2%7D%5C%25%7D%20%3D%20e%5E%7B%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%20-%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%7D)
![\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]](https://tex.z-dn.net/?f=%5Cfrac%7B0.01%7D%7B5.5%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%20ln%20%5Be%5E%7B%5Cfrac%7BQ%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B1073%7D%20-%20%5Cfrac%7B1%7D%7B973%7D%5D%7D%5D)
solving for Q we get
Q = 251.758 kJ/mol
b) creep rate at 500 degree C
we know





Answer:
Vab = 80V
Explanation:
The only current flowing in the circuit is supplied by the 100 V source. Its only load is the 40+60 ohm series circuit attached, so the current in that loop is (100V)/(40+60Ω) = 1A. That means V1 = (1A)(60Ω) = 60V.
Vab will be the sum of voltages around the right-side "loop" between terminals 'a' and 'b'. It is (working clockwise from terminal 'b') ...
Vab = -10V +60V +(0A×10Ω) +30V
Vab = 80V
Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it
Answer:
True
Explanation:
Dual home host - it is referred to as the firewall that is incorporated with two or more networks. out of these two networks, one is assigned to the internal network and the other is for the network. The main purpose of the dual-homed host is to ensure that no Internet protocol traffic is induced between both the network.
The most simple example of a dual-homed host is a computing motherboard that is provided with two network interfaces.
Answer:
C. underground road
Explanation:
Generally compound curves are not filtered and recommended for use in an underground road. However, they are best used in the road, water way, and rail way.