Answer:
Q = 2647 J
Explanation:
Specific heat capacity is the amount of energy required by one Kg of a substance to raise its temperature by 1 °C.
In thermodynamics the equation used is as follow,
Q = m Cp ΔT
Where;
Q = Heat = ?
m = mass = 660 g
Cp = Specific Heat Capacity = 0.3850 J.g⁻¹.°C⁻¹
ΔT = Change in Temperature = 23.35 °C - 12.93 °C = 10.42 °C
Putting values in eq. 1,
Q = 660 g × 0.3850 J.g⁻¹.°C⁻¹ × 10.42 °C
Q = 2647 J
Answer:
I would say that it is the bond called complementary hydrogen bonds
Explanation:
The nucleotides in a base pair are complementary which means their shape allows them to bond together with hydrogen bonds. The A-T pair forms two hydrogen bonds. The C-G pair forms three. The hydrogen bonding between complementary bases holds the two strands of DNA together.
<span>C. Carbon. H. Hydrogen. N. Nitrogen. O. Oxygen. P. Phosphorus. <span>S. Sulfur.</span></span>
Answer:1) Volume of
required is 55.98 mL.
2) 0.62577 grams of
is produced.
Explanation:

1) Molarity of 
Volume of 
Molarity of 
Volume of 


According to reaction, 1 mole of
reacts with 3 mole of
, then, 0.0041985 moles of
will react with:
moles of
that is 0.0125955 moles.


Volume of
required is 55.98 mL.
2)

Number of moles of
According to reaction, 3 moles of
gives 1 mole of
, then 0.004485 moles of
will give:
moles of
that is 0.001495 moles.
Mass of
=
Moles of
× Molar Mass of 
= 0.001495 moles × 418.58 g/mol = 0.62577 g
0.62577 grams of
is produced.