Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
Answer:
8.829 m/s²
Explanation:
M = Mass of Earth
m = Mass of Exoplanet
= Acceleration due to gravity on Earth = 9.81 m/s²
g = Acceleration due to gravity on Exoplanet



Dividing the equations we get

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²
Even with no friction, it depends on the slope of the roof. That is, it depends on how much elevation (altitude) he loses during the slide.
Whatever that number is ... call it 'h' ... Santa's speed when he reaches the edge is
Square root of (19.6h) meters per second.
It doesn't matter how much he weighs, or how far he has slud. Only how much altitude he lost on the slope while sliding.
Answer:
-611.32 N/C
0.43723 m
Explanation:
k = Coulomb constant = 
q = Charge = -4.25 nC
r = Distance from particle = 0.25 m
Electric field is given by

The magnitude is 611.32 N/C
The electric field will point straight down as the sign is negative towards the particle.

The distance from the electric field is 1.71436 m