Answer:
The correct answer is thermophiles.
Explanation:
Thermus aquaticus are heat resistant bacteria because these bacteria can survive under adverse environmental conditions like high temperature.
These bacteria belong to one of the most heat-loving groups of extremophiles that are thermophiles. Thermophiles are present in volcanic soil, geysers and around deep-sea vents where the temperature is extremely high.
Thermus aquaticus bacteria is used to manufacture an enzyme called Taq DNA polymerase, which is heat resistant and also an important factor in molecular biology.
Answer:
1. C + O₂ → CO₂
2. C + CO₂ → 2 CO
3. Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Answer:
Water pressure 0.5 atm
Total Pressure= 2.27 atm
Explanation:
To answer this problem, one has to realize that there are two processes that increase the temperature of the sealed vessel.
First, the dry air in the sealed vessel will be heated which will cause its pressure to increase and it can be determined by the equation:
P₁ x T₂ = P₂ x T₁ ∴ P₂ = P₁ x T₂ / T₁
For the second process, we have an amount of n moles of water which will be released when the copper sulfate is heated. In this case, to determine the value of the the water gas we will use the gas law:
PV = nRT ∴ P = nRT/V
n will we calculated from the quantity of sample.
2.50 g CuSo₄ 5H₂O x 1 mol/ 249.69 g = 0.01 mol CuSo₄ 5H₂O
the amount water of hydration is
= 0.01 mol CuSo₄ 5H₂O * 5 mol H₂O / 1 mol CuSo₄ 5H₂O
= 0.05 mo H₂O
pressure of dry air at the final temperature,
P₂ = 1 atm x 500 K/ 300 K = 1.67 atm
Pressure of water :
P (H₂O) 0.05 mol x 0.08206 Latm/kmol x 500 K/ 4 L = 0.5 atm
∴ Total Pressure = 1.67 atm
H2O Pressure = 0.5 atm
Answer:
The density is 5 g/cm3
Explanation:
The density (δ) is the ratio between the mass and the volume of a compound:
δ=m/v= 10 g/2 cm3= 5 g/cm3