The answer is convex image
Answer:
We know that for a pendulum of length L, the period (time for a complete swing) is defined as:
T = 2*pi*√(L/g)
where:
pi = 3.14
L = length of the pendulum
g = gravitational acceleration = 9.8 m/s^2
Now, we can think on the swing as a pendulum, where the child is the mass of the pendulum.
Then the period is independent of:
The mass of the child
The initial angle
Where the restriction of not swing to high is because this model works for small angles, and when the swing is to high the problem becomes more complex.
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
Answer:
direction, speed
means the object is staying still, 0
newtons, N
the sum of all the forces acting on an object
Explanation:
Answer:
Haven't done this but I think it will increase by 73.29% not too anyone correct me if I'm worng