Answer:
805.48N/m
Explanation:
According to Hookes law
F = Ke
F is the force = mg
F = 2.4×9.8 = 23.52N
e is the extension = 2.92cm = 0.0292m
Force constant K = F/e
K = 23.52/0.0292
K = 805.48N/m
Hence the force constant of the spring is 805.48N/m
Answer:
θ = 22.2
Explanation:
This is a diffraction exercise
a sin θ = m λ
The extension of the third zero is requested (m = 3)
They indicate the wavelength λ = 630 nm = 630 10⁻⁹ m and the width of the slit a = 5 10⁻⁶ m
sin θ = m λ / a
sin θ = 3 630 10⁻⁹ / 5 10⁻⁶
sin θ = 3.78 10⁻¹ = 0.378
θ = sin⁻¹ 0.378
to better see the result let's find the angle in radians
θ = 0.3876 rad
let's reduce to degrees
θ = 0.3876 rad (180º /π rad)
θ = 22.2º
Compounds are elements that are chemically combined, like water for example (it’s both hydrogen and oxygen.)
The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.
<h3>Angular Speed of the pulley </h3>
The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;
K.E = P.E
![\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20I%5Comega%5E2%20%3D%20mgh%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%28m_1R%5E2_2%20%2B%20m_2R_2%5E2%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%28%20%5Cfrac%7B1%7D%7B2%7D%20MR_1%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20MR_2%5E2%29%20%3D%20m_1gd-%20%5Cmu_km_2gd%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%5E2%5BR_2%5E2%28m_1%20%2B%20m_2%29%2B%20%5Cfrac%7B1%7D%7B2%7D%20M%28R_1%5E2%20%2B%20R_2%5E2%29%5D%20%3D%20gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C)
![\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20m_2v_0%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%5Comega%5E2%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%20gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C2m_2v_0%20%2B%20%5Comega%5E2%20%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%5C%5C%5C%5C%5Comega%5E2%20%5B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%5D%20%3D%20%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%5C%5C%5C%5C%5Comega%5E2%20%3D%20%5Cfrac%7B%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%7D%7B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%7D%20%5C%5C%5C%5C%5Comega%20%3D%20%5Csqrt%7B%5Cfrac%7B%204gd%28m_1%20-%20%5Cmu_k%20m_2%29%20-%202m_2v_0%5E2%7D%7B2R_2%5E2%28m_1%20%2B%20m_2%29%20%2B%20M%28R%5E2_1%20%2B%20R%5E2_2%29%7D%7D%20%5C%5C%5C%5C)
Substitute the given parameters and solve for the angular speed;

<h3>Linear speed of the block</h3>
The linear speed of the block after travelling 0.7 m;
v = ωR₂
v = 35.39 x 0.03
v = 1.1 m/s
Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.
Learn more about conservation of energy here: brainly.com/question/24772394
Answer:
the watt is the unit of power or radiant flax