Do not forget that mass = <span>volume x density
</span>Mass of 1 cm^3 = Density[/tex]

Then eventually we can find <span>mass of 5 cm^3 : =
</span>

So the answer is D
<span>And that's it. I'm sure it will help.</span>
Answer:
Option B is the correct answer.
Explanation:
Thermal expansion

L = 1.2 meter
ΔT = 65 - 15 = 50°C
Thermal Expansion Coefficient for aluminum, α = 24 x 10⁻⁶/°C
We have change in length

New length = 1.2 + 1.44 x 10⁻³ = 1.2014 m
Option B is the correct answer.
Answer: the answer should be 6,720 decameters.
Heat<span> may be </span>transferred<span> by means of conduction, convection, or radiation. </span>
Answer: You do not specify what is being asked for. ∆E? ∆H?
∆E = (430 - 238) J = 192 J
∆H = 430 J
Explanation:
If asked for the value of ∆H the answer is simply the change in heat, and in the question, it states introduction of 430 J of heat is causing the system to expand.
Therefore ∆H = 430 J
If asked for ∆E, we know that ∆E = ±q (heat) + work (-P∆V) = ±q + w
The question states that 238 J of work are done AND the system expanded
(work is negative because expansion means work is done BY the system, releasing energy/heat... Conversely, if the system were compressed, work is done ON the system, absorbing heat/energy)
Therefore, ∆E = (430 - 238) J = 192 J