second compound
Let molar mass of x is = X
Let molar mass of y is = Y
Moles of x in second compound = Mass / molar mass = 7 / X
Moles of y in second compound = Mass / molar mass = 4.5 / Y
For second compound
7 / X : 4.5/ Y = 1:1
Therefore
X / Y = 7/4.5
Y / X = 4.5/ 7
The mass of x in first compound = 14g
moles of x in first compound = 14/X
Mass of y in first compound = 3
moles of y in first compound = 3 / Y
14 / X : 3/ Y = 14Y / 3X = 14 X 4.5 / 3 X 7 = 3 :1
Thus molar ratio in first compound = moles of x / Moles of y = 3:2
Formula = x3y
Answer:
The acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
Explanation:
The glycine is an amino acid with the following chemical formula:
NH₂CH₂COOH
The COOH functional group is what gives the acid properties in the molecule.
Hence, when NaOH is added to glycine an acid-base reaction takes place in which COOH reacts with the NaOH added:
NH₂CH₂COOH + OH⁻ ⇄ NH₂CH₂COO⁻ + H₂O
The glycine concentration starts to shift to its ion form (NH₂CH₂COO⁻) because of the reaction with NaOH, that is why the pH glycine increases when NaOH is added.
Therefore, the acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
I hope it helps you!
No, they do not. It is not true.
Answer:
I would go with A
Explanation:
Because the earths equator is warmed by most direct rays of the sun, air a the equator is hotter than air further north or the south. The hotter air rises up at the equator and as colder air moves in to take its place, the wind begins to blow and push the ocean into waves and currents