The correct option is D.
When dissolving a substance in a solvent, stirring the solution will increased the rate at which the substance dissolved. This is because, when one stirs a solution, it exposes more surface area of the solute to the solvent, thus, increasing the interaction between the solute and the solvent. The higher the quantity of the solute that is exposed to the solvent, the higher the rate of dissolution of the solute.
Answer:
The mass of KClO₃ that will absorb the same heat as 5 g of KCl is 3.424 g
Explanation:
Here we have
Heat of solution of KClO₃ = + 41.38 kJ/mol.
Heat of solution of KCl (+17.24 kJ/mol)
Therefore, 1 mole of KCl absorbs +17.24 kJ during dissolution
Molar mass of KCl = 74.5513 g/mol
Molar mass of KClO₃ = 122.55 g/mol
74.5513 g of KCl absorbs +17.24 kJ during dissolution, therefore, 5 g will absorb

Therefore the amount of KClO₃ to be dissolved to absorb 1.156 kJ of energy is given by
122.55 g of KClO₃ absorbs + 41.38 kJ, therefore,

Therefore the mass of KClO₃ that will absorb the same heat as 5 g of KCl = 3.424 g.
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction turns out:

In such a way, by means of the mass of law action for such reaction, which is given below:

And in terms of the change
due to reaction extent:

results:

In such a way, Kp:

Nonetheless, K is asked instead of Kp, thus:

Whereas:

Which is the change in the moles of gaseous species chlorine and carbon tetrachloride. Hence, we finally obtain:

Best regards.
All its doing is changing its physical state so it chemical state not being changed means its still the same thing it was as a solid, just now its turned into a liquid.