Answer:The chemical element will always get converted during the cycle as it enters different ecosystems. Nitrogen plays an important role as a nutrient in soils. It is needed for photosynthesis in plants. Nitrogen helps decomposers such as bacteria, worms
Explanation:
Answer:
The vapor pressure of the solution is 23.636 torr
Explanation:

Where;
is the vapor pressure of the solution
is the mole fraction of the solvent
is the vapor pressure of the pure solvent
Thus,
15.27 g of NaCl = [(15.27)/(58.5)]moles = 0.261 moles of NaCl
0.67 kg of water = [(0.67*1000)/(18)]moles = 37.222 moles of H₂O
Mole fraction of solvent (water) = (number of moles of water)/(total number of moles present in solution)
Mole fraction of solvent (water) = (37.222)/(37.222+0.261)
Mole fraction of solvent (water) = 0.993
<u>Note:</u> the vapor pressure of water at 25°C is 0.0313 atm
Therefore, the vapor pressure of the solution = 0.993 * 0.0313 atm
the vapor pressure of the solution = 0.0311 atm = 23.636 torr
Answer:
15.4 g of Zn₃(PO₄)₂ are produced
Explanation:
Given data:
Mass of zinc phosphate formed = ?
Volume of zinc nitrate = 48.1 mL (0.05 L)
Molarity of zinc nitrate = 2.18 M
Solution:
Chemical equation:
3Zn(NO₃)₂ + 2K₃PO₄ → Zn₃(PO₄)₂ + 6KNO₃
Moles of zinc nitrate:
Molarity = number of moles / volume in litter
Number of moles = 2.18 M × 0.05 L
Number of moles = 0.109 mol
Now we will compare the moles of zinc phosphate with zinc nitrate from balanced chemical equation:
Zn(NO₃)₂ : Zn₃(PO₄)₂
3 : 1
0.109 : 1/3×0.109 = 0.04 mol
0.04 moles of Zn₃(PO₄)₂ are produced.
Mass of Zn₃(PO₄)₂:
Mass = number of moles × molar mass
Mass = 0.04 mol × 386.1 g/mol
Mass = 15.4 g