Answer:
D
Explanation:
The gravity is pushing the water downward so Wayne could go down but the water is pushing Wayne to go up which would make him float.
Answer:
0.75%
Explanation:
Measured value of melting point of potassium thiocyanate = 174.5 °C
Actual value of melting point of potassium thiocyanate = 173.2 °C
<em>Error in the reading = |Experimental value - Theoretical value|</em>
<em>= |174.5 - 173.2|</em>
<em>= |1.3|</em>
<em>Percentage error = (Error / Theoretical value) × 100</em>
<em>= (1.3 / 173.2)×100</em>
<em>= 0.75 %</em>
∴ Percentage error in the reading is 0.75%
Answer:
Option B
Explanation:
Looking at the 3 galvanometer readings given above, for galvanometer A, the reading is -2 mA.
For galvanometer B, the reading is 4 mA.
While for galvanometer C, the reading is -5 MA
Thus, option B is correct.
The answer is False. Simple machines are divided into three main categories, and not two. They are Levers, inclined planes and Pulleys. <span>These three simple machines all change force in such a way that it makes it easier for us to move an object. </span>
Answer:
(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s
(b) the kinetic energy of the bullet plus the block before the collision is 500J
(c) the kinetic energy of the bullet plus the block after the collision is 16.13J
Explanation:
Given;
mass of bullet, m₁ = 0.1 kg
initial speed of bullet, u₁ = 100 m/s
mass of block, m₂ = 3 kg
initial speed of block, u₂ = 0
Part (A)
Applying the principle of conservation linear momentum, for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
v is the speed of the block after the bullet embeds itself in the block
(0.1 x 100) + (3 x 0) = v (0.1 + 3)
10 = 3.1v
v = 10/3.1
v = 3.226 m/s
Part (B)
Initial Kinetic energy
Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²
Ki = ¹/₂(0.1 x 100²) + ¹/₂(3 x 0²)
Ki = 500 + 0
Ki = 500 J
Part (C)
Final kinetic energy
Kf = ¹/₂m₁v² + ¹/₂m₂v²
Kf = ¹/₂v²(m₁ + m₂)
Kf = ¹/₂ x 3.226²(0.1 + 3)
Kf = ¹/₂ x 3.226²(3.1)
Kf = 16.13 J