Answer:
Heterogeneous mixture solution
Explanation:
The reason this is Heterogeneous is that you cant see each individual compound in the solution. If this was sand or any compund that is not desolvable or not fully desolved in water would be Homogenous since you can see the individual compounds (water and sand)
Answer:
2.40 M
Explanation:
The molarity of a solution tells you how many moles of solute you get per liter of solution.
Notice that the problem provides you with the volume of the solution expressed in milliliters,
mL
. Right from the start, you should remember that you must convert this volume to liters by using the conversion factor
1 L
=
10
3
mL
Now, in order to get the number of moles of solute, you must use its molar mass. Now, molar masses are listed in grams per mol,
g mol
−
1
, which means that you're going to have to convert the mass of the sample from milligrams to grams
1 g
=
10
3
mg
Sodium chloride,
NaCl
, has a molar mass of
58.44 g mol
−
1
, which means that your sample will contain
unit conversion
280.0
mg
⋅
1
g
10
3
mg
⋅
molar mass
1 mole NaCl
58.44
g
=
0.004791 moles NaCl
This means that the molarity of the solution will be
c
=
n
solute
V
solution
c
=
0.004791 moles
2.00
⋅
10
−
3
L
=
2.40 M
The answer is rounded to three sig figs, the number of sig figs you have for the volume of the solution.
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
In a metal, "Electrons" <span> is not given an assigned location and thus can drift
In short, Your Answer would be Option C
Hope this helps!</span>