<h2>Hello!</h2>
The correct answer is A: Water molecules evaporate and condense at the same rate.
<h2>Why?</h2>
Evaporation is defined as the physical change from liquid to gas, and Condensation is the physical change from gas to liquid.
At any given temperature, these two processes occur at once, in a dynamic equilibrium.
When the lid is closed, evaporation occurs faster than condensation, and pressure increases. Then, when pressure reaches a critical value, condensation starts to occur faster than evaporation, until an equilibrium is reached, and the pressure of the water molecules in the gas phase is maximum for that temperature. The pressure at that point is called Vapor Pressure.
Have a nice day!
Answer:
I think
1. A
2. 400
3. 100
4. IDK srry
Explanation:
Ijust want to help, but I also want brainliest
Answer:
Based on the Modern Periodic table, there is an increase in the electropositivity of the atom down the group as well as increases across a period. On comparing the electropositivities of the mentioned oxides central atom, it is seen that Ca is most electropositive followed by Al, Si, C, P, and S is the least electropositive.
With the decrease in the electropositivity, there is an increase in the acidity of the oxides. Thus, the increasing order of the oxides from the least acidic to the most acidic is:
CaO > Al2O3 > SiO2 > CO2 > P2O5 > SO3. Hence, CaO is the least acidic and SO3 is the most acidic.
There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.
There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda.
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.
How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76.
Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine.