Answer:
Explanation:
Impulse of a force is measured by force x time or F X t
Impulse also equals change in momentum or
F x t = m v₂ - m v₁
The given case is as follows
in the first case
F x t = mv - o = mv
F = mv / t
in the second case
F₁ x 4 t = mv
F₁ = 1/4 x mv /t
F₁ = F / 4
option a) is correct .
iii )
In the last case
F₂ X t = m v/2 -0
F₂ = 1/2 x mv / t
= 1/2 x F
F₂ = F/2
Option e ) is correct.
Answer:
(B) The speed is larger at A than at B.
Explanation:
Point B, the final point of the trajectory, has higher electric potential than point A, the initial point of the trajectory, so the electric potential energy of the charged particle increases, which means that its kinetic energy must be decreasing, thus the speed at B must be lower than the speed at A.
<span>Place a test charge in the middle. It is 2cm away from each charge.
The electric field E= F/Q where F is the force at the point and Q is the charge causing the force in this point.
The test charge will have zero net force on it. The left 30uC charge will push it to the right and the right 30uC charge will push it to the left. The left and right force will equal each other and cancel each other out.
THIS IS A TRICK QUESTION.
THe electric field exactly midway between them = 0/Q = 0.
But if the point moves even slightly you need the following formula
F= (1/4Piε)(Q1Q2/D^2)
Assume your test charge is positive and make sure you remember two positive charges repel, two unlike charges attract. Draw the forces on the test charge out as vectors and find the magnetude of the force, then divide by the total charge to to find the electric field strength:)</span>
How many atoms are in something determines it "mass"
Answer:
2.28
Explanation:
From mirror formula,
1/f = 1/u+1/v .......... Equation 1
Where f = focal length of the mirror, v = image distance, u = object distance.
Note: The focal length mirror is positive.
make v the subject of the equation,
v = fu/(u-f)............ Equation 2
Given: f = 2.5 cm, u = 1.4 cm
Substitute into equation 2
v = 2.5(1.4)/(1.4-2.5)
v = 3.5/-1.1
v = -3.2 cm.
Note: v is negative because it is a virtual image.
But,
Magnification = image distance/object distance
M = v/u
Where M = magnification.
Given: v = 3.2 cm, u = 1.4 cm
M = 3.2/1.4
M = 2.28.
Thus the magnification of the tooth = 2.28.