1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
14

An object is dropped from rest.

Physics
1 answer:
sesenic [268]3 years ago
3 0

Taha xain malai ..........hhdd

You might be interested in
Thermodynamic Processes: An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will
djyliett [7]

Answer:

The resulting pressure is 3 times the initial pressure.

Explanation:

The equation of state for ideal gases is described below:

P\cdot V = n \cdot R_{u}\cdot T (1)

Where:

P - Pressure.

V - Volume.

n - Molar quantity, in moles.

R_{u} - Ideal gas constant.

T - Temperature.

Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:

P_{1}\cdot V_{1} = P_{2}\cdot V_{2} (2)

If we know that \frac{V_{2}}{V_{1}} = \frac{1}{3}, then the resulting pressure of the system is:

P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)

P_{2} = 3\cdot P_{1}

The resulting pressure is 3 times the initial pressure.

4 0
2 years ago
How do I do this physics problem about potential energy and kinetic energy?
larisa86 [58]

Ok i apologise for the messy working but I'll try and explain my attempt at logic

Also note i ignore any air resistance for this.

First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.

Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.

I also noted the "initial" and "final" height of the swing with hi and hf respectively.

So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.

So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).

Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.

The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).

I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx

4 0
3 years ago
What kind of light would be the best to use to look inside a cold dark cloud and see the warm stars forming inside?
lys-0071 [83]
<h2>Answer: Infrared light</h2>

A dark nebula is a cloud of dust and cold gas, which does not emit visible light and hides the stars it contains.

These types of nebulae are composed mainly of the hydrogen they obtain from nearby stars, which is their fuel.

It is using infrared light that we can "observe" and analyze in detail what happens in the inner parts of these nebulae.

7 0
2 years ago
Please help me 5-11 help help
Illusion [34]
Your answer is -6 did that answer your question
5 0
3 years ago
A mass m = 14 kg is pulled along a horizontal floor with NO friction for a distance d =5.7 m. Then the mass is pulled up an incl
frosja888 [35]

Answer:

W ≅ 292.97 J

Explanation:

1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)

Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;

W = (Fcosθ)d

Given that:

Tension of the force = 62 N

angle of incline θ =  34°

distance d =5.7 m.

Then;

W = 62 × cos(34) × 5.7

W = 353.4 cos(34)

W = 353.4 × 0.8290

W = 292.9686 J

W ≅ 292.97 J

Hence,  the work done by tension before the block goes up the incline = 292.97 J

8 0
3 years ago
Other questions:
  • Which of the following waves travel at the greatest speed
    15·1 answer
  • Phenotype describes
    14·1 answer
  • A bullet is fired vertically into a 1.40 kg block of wood at rest directly above it. if the bullet has a mass of 29.0 g and a sp
    10·1 answer
  • There are many types of significant lines in blueprint reading. Which line defines the walls and surface boundaries of prints?
    14·1 answer
  • To understand the electric force between charged and uncharged conductors and insulators. When a test charge is brought near a c
    6·1 answer
  • A gas‑forming reaction produces 1.90 m 3 1.90 m3 of gas against a constant pressure of 179.0 kPa. 179.0 kPa. Calculate the work
    12·1 answer
  • Law of conservation<br> of momentum
    9·1 answer
  • Which two concepts are Newton´s laws based on?
    6·2 answers
  • What is the Coriolis effect and doppler effect in detail. Tell me about both. Will give brainliest and lots of points
    5·1 answer
  • 17. ____ Objects with more mass have
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!