Answer:
619°C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15.0°C
Final volume of gas = 2.28 L
Final temperature = ?
Solution:
Initial volume of gas = 736 mL (736mL× 1L/1000 mL = 0.736 L)
Initial temperature = 15.0°C (15+273 = 288 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 2.28 L × 288 K / 0.736 L
T₂ = 656.6 L.K / 0.736 L
T₂ = 892.2 K
K to °C:
892.2 - 273.15 = 619°C
Answer: The temperature of the gas reduced to 400K.
Explanation:
Stated that ; The pressure remains the same, that is initial and final pressure equals 1atm.
Applying Charles Law

Initial volume V1 = 1
Final volume V2 = 1/2 (halved)
Initial temperature T1 =800K
Final temperature T2 = ?
(1/800) = (1/2)/T2
T2 = 800/2
T= 400K
Therefore, when the volume is halved, the temperature reduced also to half ( 400K)
8 because atomic number is the same as number of protons, protons and electrons have the same amount so that the element is neither positive nor negative.
Mass =70 ( Mass of protons=1 ,Mass of neutrons =1, Mass of electron =0.0005(can be ignored))
Therefore, 40 +30=70
Charge= -2 ( it is taking in/attracting electrons to its shell) base on the proton number you are able to identify if it is attracting or releasing an electron, if the electron number is more than proton number then it is attracting therefore resulting in a negative charge vice versa for releasing an electron.