In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
Answer:
The angle is 
Explanation:
From the question we are told that
The distance of the dartboard from the dart is 
The time taken is 
The horizontal component of the speed of the dart is mathematically represented as

where u is the the velocity at dart is lunched
so

substituting values

=> 
From projectile kinematics the time taken by the dart can be mathematically represented as

=> 


=> 
![\theta = tan^{-1} [0.277]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20tan%5E%7B-1%7D%20%5B0.277%5D)

Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
Answer:
I attached an image that should help.
Explanation:
Check it out.