Well for one the Oceans food chain starts with the sun and then microscopic organisms such as phytoplankton, and if they were destroyed the fish and other small creatures would eventually die off and then larger animals would too. Then that could lead to not much sea life, or sea food left for other people and animals
2.0 g 1.0g 0.5g 0.25g
3 and a half lives = 42 days
There are some exceptions to the rule organisms such as a protist called a euglena can be both heterotrophic and autotrophic. This is a true statement.
Explanation:
- Euglena is a large genus of unicellular protists: they have both plant and animal characteristics
- Photoautotrophs include protists that have chloroplasts, such as Spirogyra. Heterotrophs get their energy by consuming other organisms. Other protists can get their energy both from photosynthesis and from external energy sources
- All live in water and move by means of a flag ellum. This is an animal characteristic. Most have chloroplasts, which are characteristic of algae and plants
- Euglena is photosynthetic in the presence of sunlight i.e autotrophic, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms.
- Most species of Euglena have photosynthesizing chloroplasts within the body of the cell, which enable them to feed by autotrophy, like plants. They can also take nourishment heterotrophically, like animals.
Explanation:
It is assumed that the particles of an ideal gas have no such attractive forces. The motion of each particle is completely independent of the motion of all other particles. The average kinetic energy of gas particles is dependent upon the temperature of the gas.
The name given to the anion of this ionic compound is that it would be called D. Permanganate. This is MnO4^-.