Answer:
Option (d) 2 min/veh
Explanation:
Data provided in the question:
Average time required = 60 seconds
Therefore,
The maximum capacity that can be accommodated on the system, μ = 60 veh/hr
Average Arrival rate, λ = 30 vehicles per hour
Now,
The average time spent by the vehicle is given as
⇒ 
thus,
on substituting the respective values, we get
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle =
hr/veh
or
Average time spent by the vehicle =
min/veh
[ 1 hour = 60 minutes]
thus,
Average time spent by the vehicle = 2 min/veh
Hence,
Option (d) 2 min/veh
Answer:
44.95 tonnes
Explanation:
According to principle of buoyancy the object will just sink when it's weight is more than the weight of the liquid it displaces
It is given that empty weight of box = 40 tons
Let the mass of the stones to be placed be = M tonnes
Thus the combined mass of box and stones = (40+M) tonnes..........(i)
Since the box will displace water equal to it's volume V we have 

Now the weight of water displaced =
is density of water = 1000kg/
Thus weight of liquid displaced =
..................(ii)
Equating i and ii we get
40 + M = 84.95
thus Mass of stones = 44.95 tonnes
Moisture content is measured in terms of pounds of water per pound of air (lb water/lb air) or grains of water per pound of air (gr. of water/lb air).
Hope this helps❤
Answer:
A wheelbarrow, a bottle opener, and an oar are examples of second class levers
Answer:
The correct option is;
Materials and Components
Explanation:
The efficiency of fluid power is influenced by the components and the materials used to deliver the power of the fluid as such fluid power control are focused on
1) Advances in fluid power
2) Making use of the advantages
3) Making use of the other externally available technological advantages
4) Giving allowance for disadvantages
Areas of interest in advances in fluid power are;
a. Computer optimized flow
b. The use of new and improved materials/coatings
c. The use of components that save energy, such as intelligent supply pressure adapting systems