Answer:
When a horse pull a cart the action is on?
A horse is harnessed to a cart. If the horse tries to pull the cart, the horse must exert a force on the cart. By Newton's third law the cart must then exert an equal and opposite force on the horse. Newton's second law tells us that acceleration is equal to the net force divided by the mass of the system.
Explanation:
Answer:
15.8
0.0944
Explanation:
L = 1.5
B = 1.0
Speed of water = 15cm
Temperature = 20⁰C
At 20⁰C
Specific weight = 9790
Kinematic viscosity v = 1.00x10^-4m²/s
Dynamic viscosity u = 1.00x10^-3
Density p = 998kg/m²
Reynolds number
= 0.15x1.5/1.00x10^-4
= 225000
S = 5
5x1.5/225000^1/2
= 0.0158
= 15.8mm
Resistance on one side of plate
F = 0.664x1x1.0x10^-3x0.15x225000^1/2
= 0.04724N
Total resistance
= 2N
= 2x0.04724
= 0.0944N
Answer:
The flexural strength of a specimen is = 78.3 M pa
Explanation:
Given data
Height = depth = 5 mm
Width = 10 mm
Length L = 45 mm
Load = 290 N
The flexural strength of a specimen is given by


78.3 M pa
Therefore the flexural strength of a specimen is = 78.3 M pa
100: D, third law of motion
101: D, second law of motion