1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
15

Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o

f 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.04 m2. Assuming the ideal gas model with k 5 1.4 for the air, determine:
(a) the mass flow rate, in kg/s,
(b) the velocity at the inlet and exit, each in m/s, and
(c) the rate of heat transfer, in kW.
Engineering
2 answers:
Taya2010 [7]3 years ago
6 0

Answer:

a) m = 0.3003 kg/s

b) Vel1 = 6.25 m/s, Vel2 = 7.3725 m/s

c) 12.845 KW

Explanation:

a)

using ideal gas law:

PV = nRT

since, n = no. of moles = m/M

therefore,

PV = (m/M)RT

P1 v1 = RT1/M

where,

P1 = inlet pressure = 1 bar = 100000 Pa

v1 = specific volume at inlet = ?

R = universal gas constant = 8.314 KJ/Kmol.k

T1 = inlet temperature = 290 K

M = Molecular mass of air = 28.9628 Kg/kmol

Therefore,

v1 = (8.314 KJ/Kmol.k)(290 k)/(28.9628 kg/kmol)(100 KPa)

v1 = 0.83246 m³/kg

Now, the mass flow rate can be given as:

Mass Flow Rate = (Volume Flow Rate)/(v1)

Mass Flow Rate = (0.25 m³/s)/(0.83246 m³/kg)

<u>Mass Flow Rate = 0.3003 kg/s</u>

b)

using general gas equation to find the specific volume at the exit first, we get:

P1v1/T1 = P2v2/T2

v2 = P1 v1 T2/T1 P2

where,

P1 = inlet pressure = 1 bar

P2 = exit pressure = 0.95 bar

T1 = inlet temperature = 290 k

T2 = exit temperature = 325 k

v1 = specific volume at inlet = 0.83246 m³/kg

v2 = specific volume at exit = ?

Therefore,

v2 = (1 bar)(0.83246 m³/kg)(325 k)/(290 k)(0.95 bar)

v2 = 0.98203 m³/kg

Now, for velocity, we use formula:

Vel = v/A

where,

A = Area = 0.04 m²

For inlet:

Vel1 = Inlet Volume flow Rate/A = (0.25 m³/s)/(0.04 m²)

<u>Vel1 = 6.25 m/s</u>

For exit:

Vel2 = Exit Volume flow Rate/A = (Mass Flow Rate)(v2)/(0.04 m²)

Vel2 = (0.98203 m³/kg)(0.3003 kg/s)/0.04 m²

<u>Vel2 = 7.3725 m/s</u>

c)

using first law of thermodynamics, with no work done, we can derive the formula given below:

Q = m(h2 - h1) + (m/2)(Vel2² - Vel1²)

where,

Q = rate of heat transfer

m = mass flow rate = 0.3003 kg/s

m(h2 - h1) = change in enthalpy = mCpΔT   , for ideal gas

Vel1 = 6.25 m/s

Vel2 = 7.3725 m/s

Also,

Cp in this case will be function of temperature and given as:

Cp = KR/(K-1)

where,

K = 1.4

R = Gas constant per molecular mass of air = 0.28699 KJ/kg.k

Therefore,

Cp = 1.0045 KJ/kg.k

Now, using the values in the expression of first law of thermodynamics, we get:

Q = (0.3003 kg/s)(1.0045 KJ/kg.k)(35 K) + [(0.3003 kg/s)/2][(7.3725 m/s)² - (6.25 m/s)²]

Q = 10.55 KW + 2.29 KW

<u>Q = 12.845 KW</u>

Sliva [168]3 years ago
5 0

Answer:

A) Mass flow rate = 0.3004 Kg/s

B) Velocity at Inlet = 6.25 m/s

Velocity at exit = 7.3725 m/s

C) Rate of heat transfer = 12.858 Kw

Explanation:

T1 = 290K ;P1 = 1 bar = 100 KPa

T2= 325K ; P2 = 0.95 bar = 95 KPa

A = 0.04 m² ; k = 1.4

Molar mass of air = 28.97 Kg/Kmol

R = 8.314 J/molK

A) Since we are dealing with a steady state mass flow rate through an open system, we will treat this as an ideal gas. Thus ;

PV = nRT

n=m/M where m =1

Thus; V1 = RT1/MP1 = (8.314 X 290)/(28.97 x 100) = 0.8323 m³/Kg

Now, mass flow rate is given by;

Mass flow rate(m') = Volumetric flow rate(V')/Volume(v)

Thus; Mass flow rate(m') = 0.25/0.8323 = 0.3004 Kg/s

From Gay lussacs law; P1V1/T1 = P2V2/T2

So to find the volume at the exit which is V2, let's make V2 the subject of the formula;

(P1V1T2)/(P2T1) = V2

So; V2 = (100 x 0.8323 x 325)/(95 x 290) = 0.9818 m³/kg

B) we know that velocity = volumetric flow rate/area

Thus;

At inlet; Velocity (Vi) = 0.25/0.04 = 6.25m/s

At exit; Velocity (Ve) = Volumetric flow rate at exit/ Area.

We don't know the volumetric flow at exit so let's look for it. from earlier, we saw that;

volumetric flow rate/Volume = mass flow rate

And rearranging, volumetric flow rate(V') = mass flow rate(m) x volume(v)

So V' = 0.3004 x 0.9818 = 0.2949 Kg/s

So, Ve = 0.2949/0.04 = 7.3725 m/s

C) The steady state equation when potential energy is neglected is given by the formula;

Q'= m'Cp(T2 - T1) + (m'/2){(Ve)² - (Vi)²}

Where Q' is the rate of heat transfer.

Cp is unknown. The formula to find Cp is given as ;

Cp = KR/(K-1)

Since we are dealing with change in enthalpy here, the gas constant R will be expressed per molecular mass of the air and so R = 0.287 KJ/kg.k

Cp = (1.4 x 0.287)/(1.4 - 1) = 1.0045 Kj/KgK

And so, Q' = (0.3004 x 1.0045)(325 - 290) + (0.3004/2){(7.3725)² - (6.25)²} = 10.5613 + 2.2967 = 12.858 Kw

You might be interested in
A 225 MPa conducted in which the mean stress was 50 MPa and the stress amplitude was (a) Compute the maximum and (b) Compute the
tamaranim1 [39]

Answer:

Explanation:

Given data in question

mean stress  = 50 MPa

amplitude stress  = 225 MPa

to find out

maximum stress, stress ratio, magnitude of the stress range.

solution

we will find first  maximum stress  and minimum stress

and stress will be sum of (maximum +minimum stress) / 2

so for stress 50 MPa and 225 MPa

\sigma _{m} =  \sigma _{maximum} + \sigma _{minimum}  / 2

50 =  \sigma _{maximum} + \sigma _{minimum}  / 2    ...........1

and

225 =  \sigma _{maximum} + \sigma _{minimum}  / 2      ...........2

from eqution 1 and 2 we get maximum and minimum stress

\sigma _{maximum} = 275 MPa        ............3

and \sigma _{minimum} = -175 MPa     ............4

In 2nd part we stress ratio is will compute by ratio of equation 3 and 4

we get ratio =  \sigma _{minimum} / \sigma _{maximum}

ratio = -175 / 227

ratio = -0.64

now in 3rd part magnitude will calculate by subtracting maximum stress - minimum stress i.e.

magnitude = \sigma _{maximum} - \sigma _{minimum}  

magnitude = 275 - (-175) = 450 MPa

3 0
2 years ago
Who's your favorite singer and WHT your favorite song​
Anna007 [38]

Answer:

and my favorite song is popular loner

Explanation:

my favorite rapper is rod wave

6 0
3 years ago
Read 2 more answers
For the following circuit diagram, if A=010 , B= 101.
Fantom [35]

Answer:

cgghhhh chick jjkkkkkki

4 0
2 years ago
If the price of the car is less than or equal to your available cash, display "no". If the price of the car is more than your av
Ede4ka [16]

Answer:

function decision(car_price, available_cash) {

   if(car_price <= available_cash) {

   console.log("no");

   }

   else  {

   console.log("yes");

   }

   }

decision(car_price, available_cash); or decision(available_cash, car_price);

Explanation:

using functions in Javascript:

functions; this refers to dividing codes into reusable parts.

e.g function function_name() {

console.log("How are you?");

}

you can call or invoke this function by using its name followed by parenthesis, like this: function_name(). each time the function is called it will   print out "How are you?".

Parameters: these are variables that act as placeholders for the values that are to be input into a function when it is called

Arguments: The actual values that input or passed into a function when it is called.

e.g

function function_name(parameter1, parameter2) {

console.log(parameter1, parameter2);

}

then we call function_name: function_name("please", "leave"):we have passed two arguments, "please"  and "leave". Inside the function parameter1 equals "please" while parameter2 equals "leave".

Hence, from the question given the two parameters "car_price" and "available_cash" respectively, we write the function with name function_name:

function decision(car_price, available_cash) {

   if(car_price <= available_cash) {

   console.log("no");

   }

   else  {

   console.log("yes");

   }

   }

decision(car_price, available_cash); or decision(available_cash, car_price);

7 0
3 years ago
A pipe 100 mm dia and 1 km long is to carry water from a reservoir to a village of 1000 people consuming 200 l/person/day. The p
natka813 [3]

Answer:

i899999999999999999ijhhh

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • You are to assess the biomechanics of a male’s arm using his bicep to hold a 20 kg object in his hand. The upper arm is perpendi
    5·1 answer
  • Chapter 15 – Fasteners: Determine the tensile load capacity of a 5/16 – 18 UNC thread and a 5/16 – 24 UNF thread made of the sam
    8·2 answers
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • Give two methods on how powder is produced in powder metallurgy.
    5·2 answers
  • Sadadasdasdasdasdadaaasd1
    14·1 answer
  • In a diesel engine, the fuel is ignited by (a) spark (c) heat resulting from compressing air that is supplied for combustion (d)
    14·1 answer
  • As an engineer which types of ethical issues or problem you can face in industrial environment.
    8·1 answer
  • If the power to a condensing unit has been turned off for an extended period of time, the _________________________ should be en
    12·1 answer
  • How pine are processed ????
    10·1 answer
  • Which type of artificial intelligence (ai) can repeatedly perform tasks of limited scope?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!