1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
15

Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o

f 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.04 m2. Assuming the ideal gas model with k 5 1.4 for the air, determine:
(a) the mass flow rate, in kg/s,
(b) the velocity at the inlet and exit, each in m/s, and
(c) the rate of heat transfer, in kW.
Engineering
2 answers:
Taya2010 [7]3 years ago
6 0

Answer:

a) m = 0.3003 kg/s

b) Vel1 = 6.25 m/s, Vel2 = 7.3725 m/s

c) 12.845 KW

Explanation:

a)

using ideal gas law:

PV = nRT

since, n = no. of moles = m/M

therefore,

PV = (m/M)RT

P1 v1 = RT1/M

where,

P1 = inlet pressure = 1 bar = 100000 Pa

v1 = specific volume at inlet = ?

R = universal gas constant = 8.314 KJ/Kmol.k

T1 = inlet temperature = 290 K

M = Molecular mass of air = 28.9628 Kg/kmol

Therefore,

v1 = (8.314 KJ/Kmol.k)(290 k)/(28.9628 kg/kmol)(100 KPa)

v1 = 0.83246 m³/kg

Now, the mass flow rate can be given as:

Mass Flow Rate = (Volume Flow Rate)/(v1)

Mass Flow Rate = (0.25 m³/s)/(0.83246 m³/kg)

<u>Mass Flow Rate = 0.3003 kg/s</u>

b)

using general gas equation to find the specific volume at the exit first, we get:

P1v1/T1 = P2v2/T2

v2 = P1 v1 T2/T1 P2

where,

P1 = inlet pressure = 1 bar

P2 = exit pressure = 0.95 bar

T1 = inlet temperature = 290 k

T2 = exit temperature = 325 k

v1 = specific volume at inlet = 0.83246 m³/kg

v2 = specific volume at exit = ?

Therefore,

v2 = (1 bar)(0.83246 m³/kg)(325 k)/(290 k)(0.95 bar)

v2 = 0.98203 m³/kg

Now, for velocity, we use formula:

Vel = v/A

where,

A = Area = 0.04 m²

For inlet:

Vel1 = Inlet Volume flow Rate/A = (0.25 m³/s)/(0.04 m²)

<u>Vel1 = 6.25 m/s</u>

For exit:

Vel2 = Exit Volume flow Rate/A = (Mass Flow Rate)(v2)/(0.04 m²)

Vel2 = (0.98203 m³/kg)(0.3003 kg/s)/0.04 m²

<u>Vel2 = 7.3725 m/s</u>

c)

using first law of thermodynamics, with no work done, we can derive the formula given below:

Q = m(h2 - h1) + (m/2)(Vel2² - Vel1²)

where,

Q = rate of heat transfer

m = mass flow rate = 0.3003 kg/s

m(h2 - h1) = change in enthalpy = mCpΔT   , for ideal gas

Vel1 = 6.25 m/s

Vel2 = 7.3725 m/s

Also,

Cp in this case will be function of temperature and given as:

Cp = KR/(K-1)

where,

K = 1.4

R = Gas constant per molecular mass of air = 0.28699 KJ/kg.k

Therefore,

Cp = 1.0045 KJ/kg.k

Now, using the values in the expression of first law of thermodynamics, we get:

Q = (0.3003 kg/s)(1.0045 KJ/kg.k)(35 K) + [(0.3003 kg/s)/2][(7.3725 m/s)² - (6.25 m/s)²]

Q = 10.55 KW + 2.29 KW

<u>Q = 12.845 KW</u>

Sliva [168]3 years ago
5 0

Answer:

A) Mass flow rate = 0.3004 Kg/s

B) Velocity at Inlet = 6.25 m/s

Velocity at exit = 7.3725 m/s

C) Rate of heat transfer = 12.858 Kw

Explanation:

T1 = 290K ;P1 = 1 bar = 100 KPa

T2= 325K ; P2 = 0.95 bar = 95 KPa

A = 0.04 m² ; k = 1.4

Molar mass of air = 28.97 Kg/Kmol

R = 8.314 J/molK

A) Since we are dealing with a steady state mass flow rate through an open system, we will treat this as an ideal gas. Thus ;

PV = nRT

n=m/M where m =1

Thus; V1 = RT1/MP1 = (8.314 X 290)/(28.97 x 100) = 0.8323 m³/Kg

Now, mass flow rate is given by;

Mass flow rate(m') = Volumetric flow rate(V')/Volume(v)

Thus; Mass flow rate(m') = 0.25/0.8323 = 0.3004 Kg/s

From Gay lussacs law; P1V1/T1 = P2V2/T2

So to find the volume at the exit which is V2, let's make V2 the subject of the formula;

(P1V1T2)/(P2T1) = V2

So; V2 = (100 x 0.8323 x 325)/(95 x 290) = 0.9818 m³/kg

B) we know that velocity = volumetric flow rate/area

Thus;

At inlet; Velocity (Vi) = 0.25/0.04 = 6.25m/s

At exit; Velocity (Ve) = Volumetric flow rate at exit/ Area.

We don't know the volumetric flow at exit so let's look for it. from earlier, we saw that;

volumetric flow rate/Volume = mass flow rate

And rearranging, volumetric flow rate(V') = mass flow rate(m) x volume(v)

So V' = 0.3004 x 0.9818 = 0.2949 Kg/s

So, Ve = 0.2949/0.04 = 7.3725 m/s

C) The steady state equation when potential energy is neglected is given by the formula;

Q'= m'Cp(T2 - T1) + (m'/2){(Ve)² - (Vi)²}

Where Q' is the rate of heat transfer.

Cp is unknown. The formula to find Cp is given as ;

Cp = KR/(K-1)

Since we are dealing with change in enthalpy here, the gas constant R will be expressed per molecular mass of the air and so R = 0.287 KJ/kg.k

Cp = (1.4 x 0.287)/(1.4 - 1) = 1.0045 Kj/KgK

And so, Q' = (0.3004 x 1.0045)(325 - 290) + (0.3004/2){(7.3725)² - (6.25)²} = 10.5613 + 2.2967 = 12.858 Kw

You might be interested in
8. What are two ways SpaceX plans to change personal travel?
GalinKa [24]

Answer:

as all the people should go near stratosphere

8 0
2 years ago
11. Which of these is NOT true when dealing with refrigerants?
Alexus [3.1K]
Answer is an increase in pressure will cause an decrease in the pressure
4 0
3 years ago
Design for human-fit strategies include:
andreev551 [17]

Answer:

B- extreme fit, close fit, adjustable fit

Explanation:

A human-fit design typically involves the process of manufacturing or producing products (tools) that are easy to use by the end users. Therefore, human-fit designs mainly deals with creating ideas that makes the use of a particular product comfortable and convenient for the end users.

The design for human-fit strategies include; extreme fit, close fit and adjustable fit.

Hence, when the aforementioned strategies are properly integrated into a design process, it helps to ensure the ease of use of products and guarantees comfort for the end users.

5 0
3 years ago
A 132mm diameter solid circular section​
Ganezh [65]

Answer:

not sure if this helps but

5 0
3 years ago
technician a says that the higher the gear selected the more torque is available. technician b says that a transaxle contains ge
umka21 [38]

Technician A is correct. Technician B is wrong because a gear's transmission is used to increase or decrease torque.

The relation torque is relying on multiplying the circumferential detail with the resource of the usage of the radius; massive gears experience a greater amount of torque, at the same time as smaller gears experience a great deal much less torque. Similarly, the torque ratio is equal to the ratio of the gears' radii. A gear's transmission torque modifications as it will boom or decreases speed. Commonly, with the resource of the usage of lowering the speed, a small torque on the doorway issue is transferred as a massive torque at the output issue. The calculation of torque is quantified with the resource of the usage of an extensive form of teeth.

Learn more about the torque at brainly.com/question/28220969

#SPJ4

3 0
1 year ago
Other questions:
  • One-dimensional, steady-state conduction with uniform internal energy generation occurs in a plane wall with a thickness of 50 m
    14·1 answer
  • What are the disadvantages of using 3D ink jet printing ??
    8·1 answer
  • If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
    12·1 answer
  • Air is compressed in an isentropic process from an initial pressure and temperature of P1 = 90 kPa and T1=22°C to a final pressu
    7·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • What are the partial products of 2.3 x 2.6
    15·1 answer
  • What are the main causes of injuries when using forklifts?
    5·1 answer
  • ¿Cómo llevan a cabo el lavado ropa?​
    8·1 answer
  • Pleae answer brainlest due today
    6·2 answers
  • Why is California a good place for engineers to build suspension bridges?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!