Answer: Because of the longitudinal motion of the air particles, there are regions in the air where the air particles are compressed together and other regions where the air particles are spread apart. These regions are known as compressions and rarefactions respectively
Explanation:
The maximum height reached by the ball is 99.2 m
Explanation:
When the ball is thrown straight up, it follows a free fall motion, which is a uniformly accelerated motion with constant acceleration (
towards the ground). Therefore, we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
In this problem, we have:
u = 44.1 m/s is the initial vertical velocity of the ball
v = 0 is the final velocity when the ball reaches the maximum height
s is the maximum height
is the acceleration of gravity (downward, so negative)
Solving for s, we find the maximum height reached by the ball:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:

Explanation:
Change in velocity considering the x component will be
Final velocity-Initial velocity

Change in velocity considering the y component will be
Final velocity-Initial velocity

Resultant change in velocity
Acceleration= change in velocity per unit time hence

It is given that for the convex lens,
Case 1.
u=−40cm
f=+15cm
Using lens formula
v
1
−
u
1
=
f
1
v
1
−
40
1
=
15
1
v
1
=
15
1
−
40
1
v=+24.3cm
The image in formed in this case at a distance of 24.3cm in left of lens.
Case 2.
A point source is placed in between the lens and the mirror at a distance of 40 cm from the lens i.e. the source is placed at the focus of mirror, then the rays after reflection becomes parallel for the lens such that
u=∞
f=15cm
Now, using mirror’s formula
v
1
+
u
1
=
f
1
v
1
+
∞
1
=
15
1
v=+15cm
The image is formed at a distance of 15cm in left of mirror
Answer:
P = 227 N
Explanation:
Assuming the crate is on horizontal ground and subject to a horizontal force.
F = ma
P - μmg = ma
P = m(a + μg)
P = m(v²/2s + μg)
P = 50(4²/(2(5))+ 0.3(9.8))
P = 227 N