Answer:
It has been learned in this lesson that the area bounded by the line and the axes of a velocity-time graph is equal to the displacement of an object during that particular time period. ... Once calculated, this area represents the displacement of the object.
Explanation:
Answer:
100 cc
Explanation:
Heat released in cooling human body by t degree
= mass of the body x specific heat of the body x t
Substituting the data given
Heat released by the body
= 70 x 3480 x 1
= 243600 J
Mass of water to be evaporated
= 243600 / latent heat of vaporization of water
= 243600 / 2420000
= .1 kg
= 100 g
volume of water
= mass / density
= 100 / 1
100 cc
1 / 10 litres.
Answer:
<h3> 1.40625m/s²</h3>
Explanation:
Using the equation of motion expressed as v = u+gt where;
v is the final velocity of the ball
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Given
u = 9m/s
v = 0m/s
t = 6.4s
Required
acceleration due to gravity g
Since the rock is thrown up, g will be a negative value.
v = u+(-g)t
0 = 9-6.4g
-9 = -6.4g
6.4g = 9
divide both sides by 6.4
6.4g/6.4 = 9/6.4
g = 1.40625m/s²
Hence the acceleration due to gravity on the planet is 1.40625m/s²