D = m / V
It even gives you the density of gold in the problem. Major hint. Once you know the volume (using V = m / D) then you can calculate the height (thickness) from the equation...
V = L x W x H
Volume = Length x Width x Height
start by converting 200.0 mg into grams
1000 mg = 1 g
200. mg x (1 g / 10^3 mg) = 0.200 g
V = m / D
V = 0.200 g / (19.32 g/cm^3)
V = 0.01035 cm^3
Convert 2.4 ft and 1 ft to cm
2.4 ft x (12 in / 1 ft) x (2.54 cm / 1 in) = 73.15 cm
1 ft = 30.48 cm
Compute the height (thickness)
V = LxWxH
H = V / LW = 0.01035 cm^3 / 73.15 cm / 30.48 cm
H = 4.64 x 10^-6 cm
Convert to nanometers
4.64 x 10^-6 cm x (1 m / 100 cm) x (10^9 nm / 1 m) = 46.4 nm
Knowing the atomic radius of gold, I might have asked my students for the minimum number of gold atoms in this thickness of gold. This would assume that the gold atoms are all in a row. This would give the minimum number of gold atoms.
Atomic radius gold = 174 pm
Diameter = 348 pm
46.4 nm x (1 m / 10^9 nm) x (10^12 pm / 1 m) x (1 Au atom / 248 pm) = 133 atoms of gold
Answer:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations
Explanation:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations
Answer:
b. mass A → moles A → moles B
Explanation:
hope this helps
Answer:
C. Energy is absorbed and released during chemical reactions,
Explanation:
All chemical reactions involve energy. Energy is used to break bonds in reactants, and energy is released when new bonds form in products. Endothermic reactions absorb energy, and exothermic reactions release energy.