Answer:
The speed of the catapult arm needs to be increased.
Explanation:
If the height needs to stay the same, they can not change the length of the catapult arm because this is the variable that determines the height of the thrown object. To change the horizontal distance the object travels, in other words the object's speed, the rope or counterweigth that pulls the catapult arm can be changed to increase the speed that the object is thrown.
I hope this answer helps.
Answer:
3.3619 Nm
54.27472 rad
182.46618 J
86.88 W
Explanation:
= Initial angular momentum = 7.2 kgm²/s
= Final angular momentum = 0.14 kgm²/s
I = Moment of inertia = 0.142 kgm²
t = Time taken
Average torque is given by

Magnitude of the average torque acting on the flywheel is 3.3619 Nm
Angular speed is given by

Angular acceleration is given by

From the equation of rotational motion

The angle the flywheel turns is 54.27472 rad
Work done is given by

Work done on the wheel is 182.46618 J
Power is given by

The magnitude of the average power done on the flywheel is 86.88 W
Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
Answer: The law of conservation of energy is a physical law that states energy cannot be created or destroyed but may be changed from one form to another. Another way of stating this law of chemistry is to say the total energy of an isolated system.
Explanation: