1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inysia [295]
3 years ago
7

PART ONE

Physics
1 answer:
Helga [31]3 years ago
5 0

Answer:

1.129×10⁻⁵ N

1.295 m

Explanation:

Take right to be positive.  Sum of forces on the 31.8 kg mass:

∑F = GM₁m / r₁² − GM₂m / r₂²

∑F = G (M₁ − M₂) m / r²

∑F = (6.672×10⁻¹¹ N kg²/m²) (516 kg − 207 kg) (31.8 kg) / (0.482 m / 2)²

∑F = 1.129×10⁻⁵ N

Repeating the same steps, but this time ∑F = 0 and we're solving for r.

∑F = GM₁m / r₁² − GM₂m / r₂²

0 = GM₁m / r₁² − GM₂m / r₂²

GM₁m / r₁² = GM₂m / r₂²

M₁ / r₁² = M₂ / r₂²

516 / r² = 207 / (0.482 − r)²

516 (0.482 − r)² = 207 r²

516 (0.232 − 0.964 r + r²) = 207 r²

119.9 − 497.4 r + 516 r² = 207 r²

119.9 − 497.4 r + 309 r² = 0

r = 0.295 or 1.315

r can't be greater than 0.482, so r = 0.295 m.

You might be interested in
Does a falling rock have potential or kinetic energy
Neko [114]

depends t what stage in the fall it is. If it is at the peak, it is fully potential. If it is in the middle, it has both. If it is at the bottom of the fall, it is completely kinetic

3 0
2 years ago
Read 2 more answers
sonic is sliding down a frictionless 15m tall hill. He starts at the top with a velocity of 10m/s. At the bottom of the hill he
podryga [215]

Answer:

The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m

Energy approach has been used to sole the problem.

The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring

The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved

Explanation:

The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.

As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .

x = compression of the spring = 0.89

5 0
3 years ago
What makes a planet different from other celestial bodies? SIMPLE WORDS>
Gwar [14]

Answer:

don't know her boi I'm finna glow october

4 0
3 years ago
Calculate the kinetic energy of a moving 4 kg object traveling at a velocity of 3 m/a
Alina [70]

Answer:

Explanation:KE = 18 J

7 0
2 years ago
1. Johnny wants to know where the water line is in a dark well. He drops a penny into the well and counts until he hears the pen
777dan777 [17]

Answer:

3 feet down

Explanation:

i think

8 0
3 years ago
Other questions:
  • Suppose you see two main-sequence stars of the exact same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by
    8·1 answer
  • Substances whose atoms readily give up electrons are considered to be which of the following?
    11·1 answer
  • A person 1.8m tall stands 0.75m from a reflecting globe in a garden.
    13·1 answer
  • Which step is usually NOT performed when finding a pulse?
    12·2 answers
  • What is heat energy on earth escapes into space
    12·1 answer
  • During a baseball game, a baseball is struck at ground level by a batter. The ball leaves the baseball bat with an initial veloc
    6·1 answer
  • neptune is an average distance of 4.5×10^12m from the sun. Estimate the length of the Neptunian year.
    14·1 answer
  • 3. The propeller of a World War II fighter plane is 2.30 m in diameter. (a) What is its angular velocity in radians per second i
    6·1 answer
  • 5. Steve is driving in his car to take care of some errands. The first errand has him driving to a location 2 km East and 6 km N
    14·1 answer
  • When 150 joules of work is done on a system by an external force of 15 newtons in 20. seconds, the total energy of that system i
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!