Answer:
Explanation:
The bead is moving on a vertical circular path so it must have a centripetal force towards the centre.
This force is equal to m v² / r
v is velocity of bead and r is radius of the circular path.
The vertical hoop is also rotating about a vertical axis passing through the centre at frequency f so the bead will experience a cetrifugal force due to rotation of the hoop. Its value is
m ω² r . Only at the point o degree and 180 degree , these forces are opposite to each other so at these points , the bead will be in equilibrium .
mv² / r = m ω² r
v² = ω² r²
v = ω r
= 2π f r
= 2 x 3.14 x 2 x 0.22
v = 2.76 m /s
For the bead to rise upto point θ = 90 degree , height achieved is radius R
required velocity = √ 2gR
= √ 2x 9.8x.22
= 2.076 m/s
This velocity is less than the velocity calculated earlier so the bead will be able to ride the required height.
v = 2.76 m/s
Answer:
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Explanation:
The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.
The first minimum occurs for m = 1, so the diffraction equation of a slit remains
a sin θ = λ
in general, the diffraction patterns occur at very small angles, so
sin θ = θ
θ = λ / a
in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.
θ = 1.22 λ /a
In this exercise we are told that the opening changes
a’ = 2 a
we substitute
θ ‘= 1.22 λ / 2a
θ' = (1.22 λ / a) 1/2
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
They will both hit the ground at the same time because gravitational acceleration for all objects is the same.
Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.
we have to use newtons law of gravitation which is
F=GMm/r^2
G=6.67 x 10^<span>-11N kg^2/m^2
</span>M=<span>(15kg)
</span>m=15 kg
r=(3.0m)^2<span>
</span>putting values we have
<span>=(6.67 x 10^-11N kg^2/m^2)(15kg)(15kg)/(3.0m)^2 </span>
=1.67 x 10^-9N