Answer:
Gravitational pull
Explanation:
There are four fundamental forces in nature:
- Gravitational force: it is an attractive force exerted between all objects having mass. Its magnitude is proportional to the product of the masses and inversely proportional to the square of the distance between the objects.
- Electromagnetic force: it is the force exerted between electrically charged object. It can be either attractive ore repulsive. Its magnitude is proportional to the product of the charges and inversely proportional to the square of the distance between the objects.
- Strong nuclear force: it is the force responsible for holding protons and neutrons together in the nuclei of the atoms. It is attractive and acts only on a very short scale.
- Weak nuclear force: it is the force responsible for certain nuclear decay processes (radioactivity).
In this problem, landslides occur when certain masses of terrain are attracted towards the ground - they are attracted because of the gravitational force.
So, the correct answer is
gravitational pull
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Answer:
Explanation:
Given
initial velocity component of engines is


time period of engine running=763 s
Displacement in 

Using
in x and y direction




In y direction




x component
y component
Answer:
18 km
Explanation:
Convert km/h to m/s:
120 km/h × (1000 m/km) × (1 h / 3600 s) = 33.3 m/s
The time it takes the bomb to travel the 2000 meters is:
2000 m / (33.3 m/s) = 60 s
So it takes 60 seconds for the bomb to fall. The distance it fell is therefore:
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (0 m/s) (60 s) + ½ (10 m/s²) (60 s)²
Δy = 18,000 m
Δy = 18 km
Explanation:
Every rotating body experiences centrifugal force. Due to this force the body tends to bulge out around it mid point and gets flattened at the poles. Same is applicable to Earth as well. Since the Earth is rotating at a very high speed, its equator gets bulged out due to centrifugal force. Because of this bulged equator, Earth's pole to pole diameter and equatorial diameter has difference of around 42.76 km. It is flatter on the poles. This also proves that Earth is not a perfect sphere.