The point of the orbit closest to Earth<span> is called perigee, while the point farthest from </span>Earth<span> is known as apogee</span>
Taking into account the definition of Scientific notation, the correct representation of 5,970,000 in scientific notation is 5.97×10⁶.
<h3>Definition of scientific notation</h3>
Scientific notation is a quick way to represent a number using powers of base 10.
The numbers are written as a product:
a×10ⁿ
where:
- a is a real number greater than or equal to 1 and less than 10, to which a decimal point is added after the first digit if it is a non-integer number.
- n is a whole number, which is called an exponent or an order of magnitude. Represents the number of times the point decimal is shifted. It is always an integer, positive if it is shifted to the left, negative if it is shifted to the right.
<h3>This case</h3>
In this case, to write the number 5,970,000 in scientific notation, the following steps are performed:
- The decimal point is moved to the left as many spaces until it reaches the right of the first digit. This number will be the value of a in the previous expression. Then a = 5.97
- The base 10 is written with the exponent equal to the number of spaces that the decimal point moves. This is a positive number because the decimal point is shifted to the left, and it will have a value of n = 6.
Finally, the correct representation of 5,970,000 in scientific notation is 5.97×10⁶.
Learn more about scientific notation:
brainly.com/question/18073768
#SPJ1
Answer:
The magnitude of the free-fall acceleration at the orbit of the Moon is
(
, where
).
Explanation:
According to the Newton's Law of Gravitation, free fall acceleration (
), in meters per square second, is directly proportional to the mass of the Earth (
), in kilograms, and inversely proportional to the distance from the center of the Earth (
), in meters:
(1)
Where:
- Gravitational constant, in cubic meters per kilogram-square second.
- Mass of the Earth, in kilograms.
- Distance from the center of the Earth, in meters.
If we know that
,
and
, then the free-fall acceleration at the orbit of the Moon is:


The human eye is one of the most valuable sense organ. The closest object that a typical young person with normal vision can focus closest to is 25 cm
The lens in the eye forms the image on the retina. The image formed is real and inverted. The retina is a very delicate membrane containing numerous light sensitive cells.
This light sensitive cells gets activated when light falls on it and generates electric signals. These electric signals are sent to the brain via the optic nerves present in the eye. The brain finally processes these signals and thus we see the object clearly.
The ability of the lens of the eye to adjust its focal length accordingly is called the power of accommodation,
The minimum distance, at which the object can be seen clearly without any strain is called the least distance of distinct vision.
To see an object clearly without any strain is when we place it at about 25 cm from the eye.
Tolearn more about optics of the eye : brainly.com/question/22371574
#SPJ4
Answer:
(a) Yes, it is possible by raising the object to a greater height without acceleration.
Explanation:
The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in kinetic energy requires a change in velocity.
If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.
If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).
Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised to a greater height without acceleration.
Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".