Due to the gravitational pull of earth the asteroid would be pulled towards earth, so the answer is B.
Answer:
option D
Explanation:
The correct answer is option D
Netnography is a set of research practice which is used in the collection of data, analysis of the data and representation of it. Most of the data is collected by a public conversation recorded by the communication network.
Netnography uses the conversation as collected data.
so, Photos shared on Instagram can be used to track consumption patterns and conversations of online consumers.
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
Answer:
107 m
Explanation:
Convert km/h to m/s:
128.4 km/h × (1000 m / km) × (1 h / 3600 s) = 35.67 m/s
Distance = rate × time
d = 35.67 m/s × 3.0 s
d = 107 m
<span> Maths delivers! Braking distance ... If the </span>car<span> is initially travelling at u</span>m<span>/s, then the stopping distance d </span>m<span> ... the </span>speed<span> of the </span>car<span> at the </span>instant<span> the </span>brakes<span> are applied. ... An object with </span>constant acceleration<span> travels the </span>same<span> distance as it would ... We </span>start<span> with the second equation of motion:.</span>