The electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
<h3>What is electric potential energy?</h3>
Electric potential energy can be defined as the energy needed to move a charge against an electric field.
It is calculated using the formula;
U = Kq1 q2 ÷ r
Where Q = electric potential energy
k = Coulombs constant
q1 and q2 = charges
r = distance of separation
Electric potential energy is inversely proportional to the distance of separation of the charges.
If the distance of the charges changes from 3mm to 6mm, then the electric potential energy of the charges is reduced because it decreases with increase in the distance of the charges.
Therefore, the electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
Learn more about electric potential energy here:
brainly.com/question/14812976
#SPJ1
Answer:
Δv = 12 m/s, but we are not given the direction, so there are really an infinite number of potential solutions.
Maximum initial speed is 40.6 m/s
Minimum initial speed is 16.6 m/s
Explanation:
Assume this is a NET impulse so we can ignore friction.
An impulse results in a change of momentum
The impulse applied was
p = Ft = 1400(6.0) = 8400 N•s
p = mΔv
Δv = 8400 / 700 = 12 m/s
If the impulse was applied in the direction the car was already moving, the initial velocity was
vi = 28.6 - 12 = 16.6 m/s
if the impulse was applied in the direction opposite of the original velocity, the initial velocity was
vi = 28.6 + 12 = 40.6 m/s
Other angles of Net force would result in various initial velocities.
Answer:
B = ρ g V_liquid
the thrust is proportional to the density of the liquid
Explanation:
The density of a liquid is defined as the relationship between the mass and the volume of the liquid
ρ = m / V
The upward push of the liquid is given by the principle of Archimedes Archimedes establishes that the push is equal to the weight of the dislodged liquid
B = W_liquid
B = m _liquid g
we substitute mass for density
B = ρ g V_liquid
therefore we see that the thrust is proportional to the density of the liquid
Answer:
Hold active layer of soil in place; act as producers in ecosystem
Answer:
Explanation:
Given
radius r=2.96 mm
Tension T=2.4 N
time taken=0.74 s
Let
be the angular acceleration







Angular momentum



