Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical


the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero


B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)





B = 0.1 T
Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N
The formula we need to use is displacement.
, where xf is final position and xi is initial position.
We report the final position of 5 and the displacement of 2 so the formula is now:
.
So the initial position of truck A is 3.
Hope this helps.
r3t40
Answer:
m = 68,486,6 g is the answer.
Explanation:
To calculate mass you use formula:
m= V*r
To avoid remembering this formula you can see the type of unit on each given variable. We can see that we have g/cm^3 and cm^3. If we multiply them, we negate cm^3 and cm^3 and we are left with g which is unit for mass.
Hope I helped! ☺
Answer:
D
Explanation:
Two plane mirrors are inclined at 70∘. A ray incident on one mirror at incidence angle θ after reflection falls on the second mirror and is reflected from there parallel to the first mirror, The value of θ is. ∴(θ)=50∘.