The energy involved in melting in freezing is heat, At 0 degrees Celsius ice is at an equilibrium where the heat energy absorbed during melting (endothermic) and heat energy dispersed during freezing (exothermic). When ice melts its absorbs heat energy to change states, when water freezes to ice it dispersed heat energy so that the particles can move slow enough to be almost frozen, but still very small vibrations throughout the ice. Particles in the frozen state are packed tightly and help together by a crystal lattice and IMF's, liquid is free flowing with free floating particles that can move freely from one another particle.
My answer:
13 group of the periodic table represented by boron, aluminum and gallium subgroup. It includes gallium, indium, thallium. Typical steper oxidation in the subset gallium 3 is explained by the presence of (n-1)d^10 E-configuration.
Aluminium oxidation degree has +3 an electronic configuration of noble gases S^2P^6
Hope this helps yah!!!
A;4, b;6, c;7, d;5, e;8, f;3
well when there is more kinetic energy in a solution the higher its temperature is going to be so the more the molecules are able to be help together, the lower the temperature the more difficult it would be to break the molecule apart in order to bond with it.
Answer:
There will not be any ejection of photoelectrons
Explanation:
Energy of the photon= hc/λ
Where;
h= Plank's constant
c= speed of light
λ= wavelength of the incident photon
E= 6.6×10^-34 × 3 ×10^8/488 × 10^-9
E= 4.1 ×10^-19 J
Work function of the metal (Wo)= 2.9 eV × 1.6 × 10^-19 = 4.64 × 10^-19 J
There can only be ejected photoelectrons when E>Wo but in this case, E<Wo hence there will not be any ejection of photoelectrons.