Answer:
Here
Explanation:
Chemists need the mole concept to bridge the gap between the microscopic world of atoms to the macroscopic world of humans. As you know, the molecular level consists of particles that are invisible to us.
Wdym mole like the animal or something else ?
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
Option A. FeCl3
Explanation:
The following data were obtained from the question:
Mass of iron (Fe) = 6.25g
Mass of the compound formed = 18g
From the question, we were told that the compound formed contains chlorine. Therefore the mass of chlorine is obtained as follow
Mass of chlorine (Cl) = Mass of compound formed – Mass of iron.
Mass of chlorine (Cl) = 18 – 6.25
Mass of chlorine (Cl) = 11.75g
The compound therefore contains:
Iron (Fe) = 6.25g
Chlorine (Cl) = 11.75g
The empirical formula for the compound can be obtained by doing the following:
Step 1:
Divide by their molar mass
Fe = 6.25/56 = 0.112
Cl = 11.75/35.5 = 0.331
Step 2:
Divide by the smallest
Fe = 0.112/0.112 = 1
Cl = 0.331/0.112 = 3
The empirical formula for the compound is FeCl3