1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
12

When a steady current flows through a resistor, the resistor heats up. We say that "electrical energy is dissipated" by the resi

stor, that is, converted into heat. But if energy is dissipated, where did it come from? Did it come from the voltage source through the wires?
Physics
1 answer:
drek231 [11]3 years ago
7 0

Answer:

The dissipated energy in a resistor comes from the potential electric energy of a current source. This is known as the Joule effect. In fact, this energy is carried by the wires until the resistor.

You might be interested in
A sample of an unknown substance has a mass of 0.465 kg. if 3,000.0 j of heat is required to heat the substance from 50.0°c to 1
hammer [34]

The specific heat of the substance will be 0.129 J/g°C.

<h3>What is specific heat capacity?</h3>

The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.

Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.

The given data in the problem is;

Q is the amount of energy necessary to raise the temperature = 3,000.0 j

M is the mass=  0.465 kg.

Δt is the time it takes to raise the temperature.=50°c

s stands for specific heat capacity=?

Mathematically specific heat capacity is given by;

\rm Q= MC \triangle t \\\\ C = \frac{Q}{M\triangle t} \\\\ C = \frac{3000}{0.465 \triangle 50} \\\\ C =129.0 J/Kg^0C \\\\ C= 0.129 J/g^0C

Hence the specific heat of the substance will be 0.129 J/g°C.

To learn more about the specific heat capacity refer to the link brainly.com/question/2530523

5 0
1 year ago
2. The components of vector A are given as follows:
Stella [2.4K]

Answer:

50 degree.

Explanation:

Given that the components of vector A are given as follows: Ax = 5.6 Ay = -4.7

The angle between vector A and B in the positive direction of x-axis will be achieved by using the formula:

Tan Ø = Ay/Ax

Substitute Ay and Ax into the formula above.

Tan Ø = -4.7 / 5.6

Tan Ø = -0.839

Ø = tan^-1(-0. 839)

Ø = - 40 degree

Therefore, the angle between vector A and B positive direction of x-axis will be

90 - 40 = 50 degree.

3 0
2 years ago
You and a partner sit on the floor and stretch out a coiled spring to a length of 7.2 meters. You shake the coil so you
vekshin1

Answer:

Approximately 5.9\; {\rm m\cdot s^{-1}} (assuming that the partner is holding the other end of the coil stationary.)

Explanation:

In a standing wave, an antinode is a point that moves with maximal amplitude, while a node is a point that does not move at all. There is an antinode between every two adjacent nodes. Likewise, there is a node between every two adjacent antinodes.

The side of the spring that is being shaken moving with maximal amplitude. Hence, that point on this spring would also be an antinode. In contrast, the side of the spring that is held still (does not move at all) would be a node.

There would be a node between:

  • the antinode at the end of the spring that is being shaken, and
  • the antinode between the two ends of this spring.

Overall, the nodes and antinodes on this spring would be:

  • node at the end that is being held still,
  • antinode (as mentioned in the question),
  • node (inferred, not mentioned in the question), and
  • antinode at the end that is being shaken.

The distance between two adjacent nodes is equal to one-half (that is, (1/2)) the wavelength of the wave. The distance between a node and an adjacent antinode is one-quarter (that is, (1/4)) of the wavelength of the wave.

Thus, if the wavelength of the wave in this question is \lambda, the length of this spring would be:

\displaystyle \frac{1}{2}\, \lambda + \frac{1}{4}\, \lambda = \frac{3}{4}\, \lambda.

The question states that the length of this coiled spring is 7.2\; {\rm m}. In other words, (3/4) \, \lambda = 7.2\; {\rm m}. The wavelength of this wave would be (7.2\; {\rm m}) / (3/4) = 9.6\; {\rm m}.

The frequency f of this wave is the number of cycles in unit time:

\begin{aligned} f &= \frac{10}{16.3\; {\rm s}} \approx 0.613\; {\rm s^{-1}}\end{aligned}.

Hence, the speed v of this wave would be:

\begin{aligned} v &= \lambda\, f \\ &=9.6\; {\rm m} \times 0.613\; {\rm s^{-1}} \\ &\approx 5.9\; {\rm m \cdot s^{-1}}\end{aligned}.

3 0
2 years ago
The best type of exercise for weight loss is
lbvjy [14]

Answer:

finding a workout.

Explanation:

6 0
3 years ago
State coulombs law in word​
amid [387]
<h2><em>state coulombs law in word</em></h2>

  • <em>: a statement in physics: <u>the force of attraction or repulsion acting along a straight line between two electric charges is directly proportional to the product of the charges and inversely to the square of the distance between </u></em><em><u>them</u></em>

<em><u>hope </u></em><em><u>it</u></em><em><u> helps</u></em>

<em><u>#</u></em><em><u>c</u></em><em><u>a</u></em><em><u>r</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>on</u></em><em><u> learning</u></em>

3 0
2 years ago
Other questions:
  • A projectile is launched with an initial velocity of 25 m/s at an angle of 30° above the horizontal. The projectile reaches maxi
    14·1 answer
  • A 2.5 kg mass starts from rest at point A and moves along the x-axis subject to the potential energy shine in the figure below
    12·1 answer
  • An electromagnetic wave travels in a vacuum. The wavelength of the wave is tripled. How is this accomplished?
    9·1 answer
  • Why does physics involve math?
    14·1 answer
  • If two objects are the same size but one object is 3 times hotter than the other object, the hotter object emits If two objects
    8·1 answer
  • Each of 100 identical blocks siting on a frictionless surface is connected to the next bloc by a massless string. The first bloc
    10·1 answer
  • The initial momentum of a system is measured at 300 kg•m/s. Afterwards, the
    10·1 answer
  • In Figure 4.27 four particles form a square of edge length
    13·1 answer
  • How far from the earth must a body be along a line toward the sun so that the sun’s
    14·1 answer
  • How did Albert Einstein come up with 3 = mc square pls help
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!