Answer:
Electron transport produces 3 ATP molecule(s) per NADH molecule and 2 ATP molecules(s) perFADH 2 molecule.
Explanation:
The mechanism by which ATP is produced is explained by the theory of chemosmotic coupling.
This theory establishes that the synthesis of ATP in cellular respiration comes from an electrochemical gradient existing between the internal membrane and the space of the intermembrane of the mitochondria, through the use of the energy of NADH and FADH2 that have been formed by the rupture of molecules rich in energy, such as glucose.
゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚Answer:゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚
The following: Jupiter, Saturn, Uranus, or Neptune.
゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚Explanation:゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚
any of the planets Jupiter, Saturn, Uranus, and Neptune whose orbits lie beyond the asteroid belt.
Answer is: 5.22·10²² atoms of Iodine.
m(CaI₂) = 12.75 g; mass of calcium iodide.
M(CaI₂) = 293.9 g/mol; molar mass of calcium iodide.
n(CaI₂) = m(CaI₂) ÷ M(CaI₂).
n(CaI₂) = 12.75 g ÷ 293.9 g/mol.
n(CaI₂) = 0.043 mol; amount of calcium iodide.
In one molecule of calcium iodide, there are two iodine atoms
n(I) = 2 · n(CaI₂).
n(I) = 0.086 mol; amount of iodine atoms.
Na = 6.022·10²³ 1/mol; Avogadro number.
N(I) = n(I) · Na.
N(I) = 0.086 mol · 6.022·10²³ 1/mol.
N(I) = 5.22·10²²; number of iodine atoms.
Answer: False
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
Example:
has similar molecular formula and empirical formula as the elements are already present in simplest of the ratios.
has molecular formula of
but
as the empirical formula.