Answer:
if you did it would probably make it bigger...
Explanation:
:)
If they didn't, they wouldn't be able to communicate their findings effectively. An international language is especially important for elements because many elements have similar properties (e.g. some of the transition metals).

☃️ Chemical formulae ➝ 
How to find?
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

Solution:
❍ Molecular weight of 
= 2 × 126.90
= 253.80
= 254 (approx.)
❍ Given weight: 12.7
Then, no. of moles,
⇛ No. of moles = 12.7 / 254
⇛ No. of moles = 0.05 moles
⚘ No. of moles of Iodine molecule in the given weight = <u>0.05</u><u> </u><u>moles </u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
The equivalence point of a titration is equal to its stoichiometric equivalents of analyte and titrant.
Depending on the concentration of titrant we could be adding little excess of it and this may result in persistence of color of solution. After continuous stirring for a while the excess titrant may react with dissolved CO₂ in air and thus decolorizing the solution.
<span />
According to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple (option C).
<h3>What is Boyle's law?</h3>
Boyle's law is the observation that the pressure of an ideal gas is inversely proportional to its volume at constant temperature.
However, when the temperature of a gas is increased, the pressure of the gas also increases provided the volume is constant.
According to this question, the temperature of a gas tripled as the number of moles and the volume were held constant.
Therefore, according to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple.
Learn more about Boyle's law at: brainly.com/question/1437490
#SPJ1