Molar mass = 305.42 g/mol
C = ( 12 x 18 / 305.42 ) x 100 => 70.72 % of C
H = ( 1 x 27 / 305.42 ) x 100 => 8.84 % of H
N = ( 14 x 1 / 305.42 ) x 100 => 4.58 % of N
O = ( 16 x 3 / 305.42) x 100 => 15.71% of O
hope this helps!
Explanation:
oxidation of Nitrogen in NO2 is +4
Answer:
B
Explanation:
sometimes it can change chemically but not all the time.
Answer:
To keep a record of who has the evidence and when
Explanation:
Don't want anyone tampering with it, hope this helps!!!
<u>Answer:</u> The percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the fractional abundance of
isotope be 'x'. So, fractional abundance of
isotope will be '1 - x'
- <u>For
isotope:</u>
Mass of
isotope = 34.9689 amu
Fractional abundance of
isotope = x
- <u>For
isotope:</u>
Mass of
isotope = 36.9659 amu
Fractional abundance of
isotope = 1 - x
- Average atomic mass of chlorine = 35.4527 amu
Putting values in equation 1, we get:
![35.4527=[(34.9689\times x)+(36.9659\times (1-x))]\\\\x=0.7577](https://tex.z-dn.net/?f=35.4527%3D%5B%2834.9689%5Ctimes%20x%29%2B%2836.9659%5Ctimes%20%281-x%29%29%5D%5C%5C%5C%5Cx%3D0.7577)
Percentage abundance of
isotope = 
Percentage abundance of
isotope = 
Hence, the percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.