A gas has more free molecules, and it is air, not a tangible substance. Hope it helps! :)
Answer:You can get the valence electrons in an atom's electronic arrangement by consulting the periodic table:
Explanation:
The Group 1 atoms have 1 valence electron.
The Group 2 atoms have 2 valence electrons.
The Group 3 atoms have 3 valence electrons.
The Group 4 atoms have 4 valence electrons.
Answer:
0.702M
Explanation:
Molarity of a solution, which refers to the molar concentration of that solution can be calculated thus;
Molarity = number of moles (n) ÷ volume (V)
Firstly, we convert 18.5 grams of NaCl to moles using the formula; mole = mass/molar mass
molar mass of NaCl = 23 + 35.5 = 58.5g/mol
mole = 18.5/58.5
mole = 0.32moles
Volume of water (V) = 450mL = 450/1000 = 0.450L
Molarity = n/V
Molarity = 0.32/0.450
Molarity = 0.702M
<span>a. 0.325 g / 63.55 g/mol = 5.11 X 10^-3 moles Cu. SHould form 5.11 X 10^-3 mol Cu2+
b. Should form 5.11 X 10^-3 mol Cu(OH)2
c. 1 g Zn / 65.4 g/mol = 0.0153 mol Zn
Excess Zn = 0.0153 - 0.0051 = 0.0102 moles excess zinc
d. 5.11 X 10^-3 mol Mg X 24.3 g/mol = 0.124 grams Mg</span>
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³