Answer:
just as rea was situated at a distance in picture and a half dozen years old in his first comment in picture the actor was the first thing he had ever heard about it he reati was the only person who has
Explanation:
plz help you get the best in your house but muje has been in a relationship since the last
Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.
Average acceleration is
Change in Velocity/change in time
So you could then do Vf-Vi/Tf-Ti
Which would look like 13m/s-6m/s / 1s-0s
Which then is 7m/s/1s which means the acceleration is 7m/s^2
Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Answer:
The moon is 1,079.4 mi.
Mars is 2,106.1 mi
Multiply your weight by the moon's gravity relative to earth's, which is 0.165. Solve the equation. In the example, you would obtain the product 22.28 lbs. So a person weighing 135 pounds on Earth would weigh just over 22 pounds on the moon
Being that Mars has a gravitational force of 3.711m/s2, we multiply the object's mass by this quanitity to calculate an object's weight on mars. So an object or person on Mars would weigh 37.83% its weight on earth.
Explanation:
~Hope this helps