1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
5

What relationship exists betwen air resistance and acceleration of falling objects

Physics
2 answers:
ololo11 [35]3 years ago
5 0
They both make a thing go faster and slower but the relationship is force.
Katen [24]3 years ago
4 0
They are both forces that exist when an object is falling. Terminal velocity occurs when gravitational acceleration is equivalent to air resistance. :)
You might be interested in
A 62kg box is lifted 12 meters off the ground. How much work is done?
Temka [501]

Answer: 7291.2 joules

Explanation:

Work is done when force is applied on an object over a distance.

Thus, Workdone = Force X distance

Since Distance moved by box = 12 metres

mass of box = 62kg

Acceleration due to gravity when box was lifted is represented by g = 9.8m/s^2

Recall that Force = Mass x acceleration due to gravity

i.e Force = 62kg x 9.8m/s^2

= 607.6 Newton

So, Workdone = Force X Distance

Workdone = 607.6 Newton X 12 metres

Workdone = 7291.2 joules

Thus, 7291.2 joules of work was done.

4 0
3 years ago
Please awnser and show the ways​
topjm [15]

Answer:

Answers in solutions.

Explanation:

<u>Question 6:</u>

The density of gold is 19.3 g/cm³

The density of silver is 10.5 g/cm³

  • The density of the substance in Crown A;

Density = mass ÷ volume = \frac{1930}{100} = 19.3 g/cm³

Since the density of gold, given, is 19.3 g/cm³ and the density of the substance in Crown A has a density of 19.3 g/cm³ , then that substance must be gold.

  • The density of the substance in Crown B;

Density = mass ÷ volume = 1930 ÷ 184 = 10.48913043  g/cm³ ≈ 10.5 g/cm³  (answer rounded up to one decimal place)

Since the density of the substance in Crown B is approximately equal to 10.5 g/cm³ , then that substance is Silver.

  • The density of substance in Crown C;

Density = mass ÷ volume = 1930g ÷ 150cm³ = 12.86666667 ≈ 12.9 cm³ (answer rounded up to one decimal place)

<h3><u>The density of the mixture:</u></h3><h3 />

For 2 cm³ of the mixture, its mass equal 19.3 g + 10.5 g = 29.8 g

∴ for 1 cm³ of the mixture, its mass equal to \frac{29.8}{2} = 14.9 g

Hence the density of the mixture = 14.9 g/cm³ and is not equal to the density of the substance in Crown C.

* Crown C is not made up of a mixture of gold and silver.

<u>Question 7:</u>

<u />

  • An empty masuring cylinder has a mass of 500 g.
  • Water is poured into measuring cylinder until the liquid level is at the 100 cm³ mark.
  • The total mass is now 850 g

The mass of water that occupied the 100 cm³ space of the container = total mass - mass of the empty container = 850 g - 500 g = 350 g

Density of the liquid (water) poured into the container = mass ÷  volume = 350 g ÷ 100 cm³ = 3.5g/cm³

<u>Question 8:</u>

<u />

A tank filled with water has a volume of 0.02 m³

(a) 1 liter = 0.001 m³

How many liters? = 0.02 m³ ?

Cross multiplying gives:

\frac{0.02 * 1}{0.001} =  20 liters

(b) 1 m³ = 1,000,000 cm³

0.02 m³ = how many cm³ ?

Cross-multiplying gives;

\frac{0.02 * 1,000,000}{1} = 20,000 cm³

(c) 1 cm³ = 1 ml

∴ 0.02 m³ of the water = 20,000 cm³ = 20,000 ml

<u>Question 9:</u>

<u />

Caliper (a) measurement = 3.2 cm

Caliper (b) measurement = 3 cm

<u>Question 10:</u>

<u />

  • A stone is gently and completely immersed in a liquid of density 1.0 g/cm³
  • in a displacement can
  • The mass of liquid which overflow is 20 g

The mass of the liquid which overflow = mass of the stone = 20 g

1 gram of the liquid occupies 1 cm³ of space.

20 g of the liquid will occupy; \frac{20 * 1}{1} = 20 cm³

(a) Since the volume of the water displaced is equal to the volume of the stone.

∴ The volume of the stone = 20 cm³

(b) Mass = density ×  volume

Density of the stone = 5.0 g/cm³

Volume of the stone = 20 cm³

Mass of the stone = 5 g/cm³ × 20 cm³ = 100 g

7 0
2 years ago
A force in the +x-direction with magnitude ????(x) = 18.0 N − (0.530 N/m)x is applied to a 6.00 kg box that is sitting on the ho
fiasKO [112]

Answer:

v_f=8.17\frac{m}{s}

Explanation:

First, we calculate the work done by this force after the box traveled 14 m, which is given by:

W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m

Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

W=\Delta K\\W=K_f-K_i\\W=\frac{mv_f^2}{2}-\frac{mv_i^2}{2}

The box is initially at rest, so v_i=0. Solving for v_f:

v_f=\sqrt{\frac{2W}{m}}\\v_f=\sqrt{\frac{2(200N\cdot m)}{6kg}}\\v_f=\sqrt{66.67\frac{m^2}{s^2}}\\v_f=8.17\frac{m}{s}

5 0
2 years ago
Katya listed major questions that scientists try to answer when they classify organisms. Her list included the following questio
valentinak56 [21]
<span>An ecosystem can only sustain so many organisms. That limit would be its carrying capacity. If the population goes above that number then other factors will cause the population to crash and then rebound to a constant level. </span>
5 0
3 years ago
Read 2 more answers
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates
IRINA_888 [86]

Answer:

Fc = [ - 4.45 * 10^-8 j ] N  

Explanation:

Given:-

- The masses and the position coordinates from ( 0 , 0 ) are:

       Sphere A : ma = 80 kg , ( 0 , 0 )

       Sphere B : ma = 60 kg , ( 0.25 , 0 )

       Sphere C : ma = 0.2 kg , ra = 0.2 m , rb = 0.15

- The gravitational constant G = 6.674×10−11 m3⋅kg−1⋅s−2

Find:-

what is the gravitational force on C due to A and B?

Solution:-

- The gravitational force between spheres is given by:

                       F = G*m1*m2 / r^2

Where, r : The distance between two bodies (sphere).

- The vector (rac and rbc) denote the position of sphere C from spheres A and B:-

 Determine the angle (α) between vectors rac and rab using cosine rule:

                   cos ( \alpha ) = \frac{rab^2 + rac^2 - rbc^2}{2*rab*rac} \\\\cos ( \alpha ) = \frac{0.25^2 + 0.2^2 - 0.15^2}{2*0.25*0.2}\\\\cos ( \alpha ) = 0.8\\\\\alpha = 36.87^{\circ \:}

 Determine the angle (β) between vectors rbc and rab using cosine rule:

                   cos ( \beta  ) = \frac{rab^2 + rbc^2 - rac^2}{2*rab*rbc} \\\\cos ( \beta  ) = \frac{0.25^2 + 0.15^2 - 0.2^2}{2*0.25*0.15}\\\\cos ( \beta  ) = 0.6\\\\\beta  = 53.13^{\circ \:}

- Now determine the scalar gravitational forces due to sphere A and B on C:

       Between sphere A and C:

                  Fac = G*ma*mc / rac^2

                  Fac = (6.674×10−11)*80*0.2 / 0.2^2  

                  Fac = 2.67*10^-8 N

                  vector Fac = Fac* [ - cos (α) i + - sin (α) j ]

                  vector Fac = 2.67*10^-8* [ - cos (36.87°) i + -sin (36.87°) j ]

                  vector Fac = [ - 2.136 i - 1.602 j ]*10^-8 N

       Between sphere B and C:

                  Fbc = G*mb*mc / rbc^2

                  Fbc = (6.674×10−11)*60*0.2 / 0.15^2  

                  Fbc = 3.56*10^-8 N

                  vector Fbc = Fbc* [ cos (β) i - sin (β) j ]

                  vector Fbc = 3.56*10^-8* [ cos (53.13°) i - sin (53.13°) j ]

                  vector Fbc = [ 2.136 i - 2.848 j ]*10^-8 N

- The Net gravitational force can now be determined from vector additon of Fac and Fbc:

                  Fc = vector Fac + vector Fbc

                  Fc = [ - 2.136 i - 1.602 j ]*10^-8  + [ 2.136 i - 2.848 j ]*10^-8

                  Fc = [ - 4.45 * 10^-8 j ] N  

3 0
3 years ago
Other questions:
  • What is the acceleration of a softball if it hits the ground with a force 0.50 kg and hits the catchers glove with a force of 25
    7·1 answer
  • When cleaning up a local beach, students found many different particles that were in the water that affected the shoreline, like
    15·2 answers
  • What is the longest bone in your body
    14·2 answers
  • Please help
    7·2 answers
  • Que te permite hacer un pase largo en el baloncesto
    7·1 answer
  • The micrometer (1 μm) is often called the micron. (a) How many microns make up 3.0 km? (b) How many centimeters equal 3.0 μm? (c
    7·1 answer
  • Anyone know the answer to this? Please help.. NO LINKS
    13·1 answer
  • A 5kg cart moving to the right with a velocity of 16 m/s collides with a concrete wall and
    12·1 answer
  • Number 11 please I really need help!!
    13·2 answers
  • A metre rule is used to measure a length Which reading is shown to the nearest millimetre? A 0.7 m B 0.76 m с 0.761 m D 0.7614 m
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!