Answer:
a
Solid Wire
Stranded Wire
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is
The radius of each strand is
The current density in both wires is
Considering the first wire
The cross-sectional area of the first wire is
= >
= >
Generally the current in the first wire is
=>
=>
Considering the second wire wire
The cross-sectional area of the second wire is
=>
=>
Generally the current is
=>
=>
Considering question two
From the question we are told that
Resistivity is
The length of each wire is
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
When you're talking about gravity, it's easy to identify the equal
opposite forces.
Gravity ALWAYS produces an equal pair of opposite forces.
They both act between the centers of the two objects, one in
each direction.
Consider the equal pair of opposite gravitational forces between
you and the Earth. One force acts on you, and draws you toward
the center of the Earth. We call that force "your weight".
The other one acts on the Earth, and draws it toward the center
of you. Hardly anybody ever talks about that one, but the two
forces are equal ... your weight on Earth is equal to the Earth's
weight on you !
If you give us the situation described then I'll be able to help.
the magnitude of charge=q=8.76 x 10⁻⁵C
Explanation:
the magnetic force Fm is given by
Fm= q V B sinθ
q= charge
v= velocity= 2.5 x 10⁴ m/s
B= magnetic field strength= 8.1 x 10⁻²T
Fm= magnetic force= 7.5 x 10⁻² N
θ=25°
so 7.5 x 10⁻² =q (2.5 x 10⁴ ) (8.1 x 10⁻²) sin25
q=8.76 x 10⁻⁵C
Let us consider body moves a distance S due to the force F.
Hence the work by the body W = FS
If the force is not along the direction of displacement,then the work by a body for travelling a distance S will be -
where is the component of the force along the direction of displacement.
As per the question the power P is given as -
Hence alternative definition of power P = F.V