Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
<span>This is best understood with Newtons Third Law of Motion: for every action there is an equal and opposite reaction. That should allow you to see the answer.</span>
Answer:
D) the second at the doorknob
Explanation:
The torque exerted by a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation
is the angle between the direction of the force and d
In this problem, we have:
- Two forces of equal magnitude F
- Both forces are perpendicular to the door, so 
- The first force is exerted at the midpoint of the door, while the 2nd force is applied at the doorknob. This means that d is the larger for the 2nd force
--> therefore, the 2nd force exerts a greater torque
How many meters per second was it traveling
The total amount of energy stored in the particles of an object is called its internal energy. The internal energy of an object is made up of the kinetic energy due to the random motion of the particles and the potential energy due to the interactive forces among the particles.