Answer:
E = 0.0130 V/m.
Explanation:
The electric field is related to the potential difference as follows:

<u>Where:</u>
E: is electric field
ΔV: is the potential difference = 3.95 mV
d: is the distance of a person's chest = 0.305 m
Then, the electric field is:

Therefore, the maximum electric field created is 0.0130 V/m.
I hope it helps you!
Let’s do this together!
Okay so the acceleration formula is vf-vi over time .
So the initial velocity (vi) 7m/s final velocity (vf) is 16m/s so we’re going to subtract 16-7 which is 9
M/s
So the time is 5s so 9m/s divided into 5s is 1.8m/s/2
So the answer is 1.8m\s2
Answer:
T
beacuse:
Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).
Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:

It is -59 i think or just ask someone esle for help