The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
Answer:
Accuracy measures how close results are to the true or known value. Precision, on the other hand, measures how close results are to one another.
Answer:
1. 20.54m/s
2. 1.52s
Explanation:
QUESTION 1:
The speed the stone impact the ground is the final speed/velocity, which can be calculated using the formula:
v² = u² + 2as
Where;
v = final velocity (m/s)
u = initial velocity (m/s)
a = acceleration due to gravity (m/s²)
s = distance (m)
From the provided information, u = 5.65m/s, v = ?, s = 19.9m, a = 9.8m/s²
v² = 5.65² + 2 (9.8 × 19.9)
v² = 31.9225 + 2 (195.02)
v² = 31.9225 + 390.04
v² = 421.9625
v = √421.9625
v = 20.5417
v = 20.54m/s
QUESTION 2:
Using v = u + at
Where v = final velocity (m/s) = 20.54m/s
t = time (s)
u = initial velocity (m/s) = 5.65m/s
a = acceleration due to gravity (m/s²)
v = u + at
20.54 = 5.65 + 9.8t
20.54 - 5.65 = 9.8t
14.89 = 9.8t
t = 14.89/9.8
t = 1.519
t = 1.52s
Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).