1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
salantis [7]
3 years ago
14

A steam turbine in a power plant receives 5 kg/s steam at 3000 kPa, 500°C. Twenty percent of the flow is extracted at 1000 kPa t

o a feed water heater, and the remainder flows out at 200 kPa. Find the two exit temperatures and the turbine power output.
Engineering
1 answer:
MrMuchimi3 years ago
4 0

Answer:

The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW

Explanation:

If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.

In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg

For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg

For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg

For the power output, we have to multiply the steam flow with the enthalpic jump.

The addition of the 2 jumps is the total power output.

You might be interested in
Firefighters are holding a nozzle at the end of a hose while trying to extinguish a fire. The nozzle exit diameter is 8 cm, and
ivanzaharov [21]

Question

Determine the average water exit velocity

Answer:

53.05 m/s

Explanation:

Given information

Volume flow rate, Q=16 m^{3}/min

Diameter d= 8cm= 0.08 m

Assumptions

  • The flow is jet flow hence momentum-flux correction factor is unity
  • Gravitational force is not considered
  • The flow is steady, frictionless and incompressible
  • Water is discharged to the atmosphere hence pressure is ignored

We know that Q=AV and making v the subject then

V=\frac {Q}{A} where V is the exit velocity and A is area

Area, A=\frac {\pi d^{2}{4} where d is the diameter

By substitution

V=\frac {16\times 4}{\pi 0.08^{2}}=3183.098862 m/min

To convert v to m/s from m/s, we simply divide it by 60 hence

V=\frac {3183.098862  m/min}{60 s}=53.0516477 m/s\approx 53.05 m/s

3 0
3 years ago
Convert 250 lb·ft to N.m. Express your answer using three significant figures.
vfiekz [6]

Answer:

It will be equivalent to 338.95 N-m

Explanation:

We have to convert 250 lb-ft to N-m

We know that 1 lb = 4.45 N

So foe converting from lb to N we have to multiply with 4.45

So 250 lb = 250×4.45 =125 N

And we know that 1 feet = 0.3048 meter

Now we have to convert 250 lb-ft to N-m

So 250lb-ft=250\times 4.45N\times 0.348M=338.95N-m

So 250 lb-ft = 338.95 N-m

6 0
3 years ago
A budding electronics hobbyist wants to make a simple 1.0-nF capacitor for tuning her crystal radio, using two sheets of aluminu
bazaltina [42]

Answer:

a. 8 sheets of paper is needed between her plates to get the proper capacitance

b. Area of Aluminum Foil needed = 0.45m²

c. To keep a 1.0-nF, a larger area of Teflon is required.

Explanation:

a.

First, we need to calculate the distance between two plates.

This is given by

d = Kε0A/C

Where

K = 3

ε0 = Physical Constant = 8.854 * 10^-12 C²/Nm²

A = Area = 22 * 28 = 616cm² = 0.0616m²

C = 1.0-nF = 1 * 10^-12F

So, d = (3 * 8.854 * 10^-12 C²/Nm² * 0.0616) / (1 * 10^-12F)

d = 1.64 * 10^-3m

d = 1.64mm

Now, that the distance has been solved.

The Number of Sheets, N is given by

N = d/d,sheet where d, sheet =the sheet thickness = 0.2mm

N = 1.64/0.2

N = 8.2

N = 8 sheets --- Approximated

b.

Here, she's changed the diameter of the sheets to 12mm

Well make use of the formula in (a) above

Using d = Kε0A/C

Where

d = 12 * 10^-3m

Other constraints remain unchanged

Make A the subject of formula

A = dC/Kε0

A = (12 * 10^-3m * 1 * 10^-12F)/(3 * 8.854 * 10^-12 C²/Nm²)

A= 0.45m²

c. From (b) above

A ∝ 1/K

As the dielectric constant increase, the area decreases

The dielectric constant of a Teflon is 2.1

This means that if she used a Teflon instead, the area will be larger.

So, to keep a 1.0-nF, a larger area of Teflon is required.

7 0
4 years ago
What do you guys like in engineering
Drupady [299]

Answer:

building lol and actually workin

Explanation:

3 0
3 years ago
Read 2 more answers
A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
solmaris [256]

Answer:

The mass flow rate of refrigerant is 0.352 kg/s

Explanation:

Considering the cycle of an ideal heat pump, provided in the attachment, we first find enthalpy at state B and D. For that purpose, we use property tables of refrigerant R134a:

<u>At State A</u>:

From table, we see the enthalpy and entropy value of saturated vapor at 0.2 MPa. Therefore:

ha = 244.5 KJ/kg

Sa = 0.93788 KJ/kg.k

<u>At State B</u>:

Since, the process from state A to B is isentropic. Therefore,

Sb = Sa = 0.93788 KJ/Kg

From table, we see the enthalpy value of super heated vapor at 1 MPa and Sb. Therefore:

hb = 256.85 KJ/kg                          (By interpolation)

<u>At State C</u>:

From table, we see the enthalpy and entropy value of saturated liquid at 1 MPa. Therefore:

hc = 107.34 KJ/kg

Now, from the diagram it is very clear that:

Heat Loss = m(hb = hc)

m = (Heat Loss)/(hb - hc)

where,

m = mass flow rate = ?

Heat Loss = (180,000 Btu/hr)(1.05506 KJ/1 Btu)(1 hr/3600 sec)

Heat Loss = 52.753 KW

Therefore,

m = (52.753 KJ/s)/(256.85 KJ/kg - 107.34 KJ/kg)

<u>m = 0.352 kg/s</u>

5 0
3 years ago
Other questions:
  • A reversible refrigerator operates between a low temperature reservoir at TL and a high temperature reservoir at TH . Its coeffi
    12·1 answer
  • Magnesium sulfate has a number of uses, some of which are related to the ability of the anhydrate form to remove water from air
    15·1 answer
  • How does it produce a 3D component?
    8·1 answer
  • Turbine blades mounted to a rotating disc in a gas turbine engine are exposed to a gas stream that is at [infinity] = 1100°C and
    6·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • What is 203593^54/38n^7
    6·1 answer
  • 14. The maximum amount a homeowner should spend on housing is
    11·1 answer
  • Summarize the difference in hydraulic and pneumatic systems.
    12·1 answer
  • How do Geothermal plowerplants relate to engineering?
    11·1 answer
  • QUICK ASAP!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!