Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
The correct option to the question is Matter.
Matter makes up everything. matter can be solid, liquid, or gas. matter is made up of atoms, or tiny particles that are the smallest unit of matter.
Moreover, Matter can be described as,
Matter is anything that has occupies space (has mass and volume).
For more information visit:
brainly.com/question/13280491
The net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N. Details about net force can be found below.
<h3>How to calculate net force?</h3>
The net force of a body can be calculated by multiplying the mass of the body by its acceleration as follows:
Force = mass × acceleration
According to this question, a box with a mass of 8.0 kg is sitting on a frictionless surface and experiences an acceleration of 4.0 m/s2 to the right.
Net force = 8kg × 4m/s²
Net force = 32N
Therefore, the net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N.
Learn more about net force at: brainly.com/question/18031889
#SPJ1
Answer:
Explanation:
Given:
- Mass of 1st body =

- Mass of 2nd body =

To Find:
- Magnitude of gravitational force
Solution:
Here, we have a formula
<u>Substituting the values</u>




Know More:
The applied formula for the above solution is

where,
- F
= Gravitational force - G = Gravitational constant
- M
= mass of 1st body - M
= mass of 2nd body - r = distance between two bodies
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease