Answer:
Force, 
Explanation:
Given that,
Mass of the bullet, m = 4.79 g = 0.00479 kg
Initial speed of the bullet, u = 642.3 m/s
Distance, d = 4.35 cm = 0.0435 m
To find,
The magnitude of force required to stop the bullet.
Solution,
The work energy theorem states that the work done is equal to the change in its kinetic energy. Its expression is given by :

Finally, it stops, v = 0



F = -22713.92 N

So, the magnitude of the force that stops the bullet is 
Answer:0.000002
Explanation: I Looked It Up lol
Answer: 
<u>Explanation:</u>
A linear equation is of the form: y = mx + b where
- m is the slope
- b is the y-intercept (where it crosses the y-axis)
x + 4y = 16
4y = -x + 16


The y-intercept (b) = 4
Next, find the slope given point (4, 5) and b = 4

Answer:
he peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.
Explanation:
In a resonance experiment, the amplitude of the system is plotted as a function of the frequency, finding maximums for the values where some natural frequency of the system coincides with the excitation frequency.
In a Fourier transform spectrum, the amplitude of the frequencies present is the signal, whereby each peak corresponds to a natural frequency of the system.
From this explanation we can see that in the first case the peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.