To accelerate a 34.01 kg-car at 0.55 m/s², a force of 19 N will be required, according to Newton's Second Law of Motion.
<h3>What does Newton's Second Law of Motion state?</h3>
Newton's Second Law of Motion states that acceleration (a) happens when a force (F) acts on a mass (m).
We want a car of mass 34.01 kg to have an acceleration of 0.55 m/s². We can calculate the required force using Newton's Second Law of Motion.
F = m × a = 34.01 kg × 0.55 m/s² = 19 N
To accelerate a 34.01 kg-car at 0.55 m/s², a force of 19 N will be required, according to Newton's Second Law of Motion.
Learn more about Newton's Second Law of Motion here: brainly.com/question/25545050
#SPJ1
A this refers to the make up of the soil
The gravitational force on two objects can be determined by the following equation:

Where G is the gravitational constant m1 is mass 1, m2 is the second mass nad r^2 is distance between these objects. Therefore, let m1 = mass of Sun 1.99x10^30 kg, m2= mass of Jupiter 1.90x10^27 kg, r is the average distance between the Sun and Jupiter 7.78x10^11 m. By plugging these values in we have:


F=4.17x10^23 N
Answer:
hsjishhdhjs jdjyshskksndhu
Answer:

Explanation:
m = Mass of object = 
m' = Mass of water = 
= Density of object
= Density of water
Weight of the water displaced is the force in the case of floating objects
According to the question

In the case of floating objects

The ratio of the density of the object to that of water is 