1. 8
2. It's a Noble gas
3. No because it doesn't need any more electrons
4. Physical - odorless yellow inflammable and conductive when it's a plasma
Chemical - unstable
Pick me as brainliest pl0x XD
Answer:
no. of water molecules associated to each molecule of
= 4
Explanation:
Mass of
before heating = 19.8 g
Mass of
after heating = 12.6 g
Difference in mass of
before and after heating
= 19.8 - 12.6 = 7.2 g
Difference in mass corresponds to mass of water driven out.
Molar mass of water = 18 g/mol
No. of moles of water = 
Mass of
obtained after heating is mass of anhydrous
.
Mass of anhydrous
= 12.6 g
Molar mass of
= 125.9 g/mol
No. of mol of anhydrous
= 
so,
0.1 mol of
have 0.4 mol of water
1 mol of
will have = 
Hence, no. of water molecules associated to each molecule of
= 4
Complete Question:
A certain ionic compound X has a solubility in water of .765g/ml at 5 degrees C. Calculate the mass of X that's dissolved in 3 L of a saturated solution of X in the water at this temp. Be sure your answer has the correct unit symbol and significant digits.
Answer:
2.29 kg
Explanation:
A saturated solution is a solution that has the maximum amount of solute diluted at it, so if more solute is added, it will precipitate. The solutions can also be unsaturated (when more solute can be dissolved) or supersaturated (when there is more solute dissolved than the maximum. It's a very unstable solution).
The saturation is measured by the solubility, which indicates how much mass of the solute can be added to a certain volume of the solvent. So, the solubility (S) is the mass (m) divided by the volume (V).
For a solution with 3 L = 3000 mL,
S = m/V
0.765 = m/3000
m = 3000 * 0.765
m = 2295 g
m = 2.29 kg
Answer: A. Most radiation reaching Earth from space is blocked by the atmosphere. Therefore, some telescopes must be placed above the atmosphere.
Explanation: Astronomers have a huge problem detecting radiation from space because the Earth's atmosphere blocks most of it and stops it from reaching the surface.
Hope this helps :)
Answer:
0.384g/l
Explanation: the density version of the ideal gas law is pm=drt
in which p= pressure, m=molar mass,d=, density, r= to a constant which is 0.08206, and t=temperature so just input the values
PM=DRT. so to find d the formula would be D=RT\PM
D=<u>0.08206*242.5</u>
0.7311*70.90
D=0.384g/l