Ok so I already studied this and I realized it was water or also Oxygen
Answer:
a) Tc = 750 [N] ;b) See the explanation below.
Explanation:
To solve this problem, we first need a graphical explanation of this, as well as knowing the corresponding questions. Therefore, a search was carried out in google, in the attached image we will find a graphical description of the problem.
b)
The solution of this type of problem corresponds to the use of Newton's third law, applying static which tells us that the sum of the forces in a system in equilibrium without movement must be equal to zero.
a)
In this way we can find by means of a sum of forces on the y axis equal to zero:
- 850 - 450 + 550 + Tc = 0
Tc = 750 [N]
Answer:
Once a carnivorous plant has procured an item for dinner, it has to have some way to turn it into fertilizer. What carnivorous plants do is very similar to what humans do with their dinner after they have eaten it. Most carnivorous plants have glands that secrete acids and enzymes to dissolve proteins and other compounds. The plants may also enlist other organisms to help with digestion. The plants then absorb the nutrients made available from the prey.
Drosera releases digestive juices through the glands at the tip of its tentacles and absorbs the nutrients through the tentacles, leaf surface, and sessile glands. In order to do this it bends its tentacles and rolls or bends the leaf to get as many tentacles as possible into contact with the prey for digestion and to make as much leaf surface available for absorption. Its relative Drosophyllum has differently structured, non moving tentacles and doesn't use them directly for digestion. Instead it has specialized glands on the surface of the leaf that release the digestive enzymes (see Carniv. Pl. Newslett. 11(3):66-73 ( PDF ) for drawings and discussion).
The sealed trap of Dionaea does digestion in a way similar to the leaf surface digestion carnivores—upon capture of a prey, digestive enzymes in mucous are released. The advantage of the sealed trap of Dionaea is rain won't wash away the nutrients as digestion proceeds.
The sealed trap carnivores Aldrovanda and Utricularia already have water in their traps so they only need to release enzymes. Utricularia appears to release the enzymes continuously into its traps.
The other carnivorous plants use either a mixed mode of digestive enzymes and partner organisms (Genlisea, Sarracenia, most Nepenthes, Cephalotus, some Heliamphora, Roridula) or other organisms exclusively for digestion (most Heliamphora, some Nepenthes, Darlingtonia). Part of the reason for partnering with other organisms is that the plants actually have little choice in the matter. This could also be a factor for the leaf surface and sealed trap digesters as well. The prey will have gut flora that are quite capable of digesting their host when it dies. In addition, insect larvae, frog tadpoles, and predacious protozoans will or will attempt to take up residence in water-filled traps. The plant releasing digestive enzymes and acids into the traps will help tip the nutrition balance to themselves, but there are limits.
Explanation:
Answer:
The electric field at a point midway between the two charges, E = -1.8 * 10⁴ N/C
Explanation:
Let the midpoint of the two charges be considered as the origin, and charge A = 30.0 * 10⁻⁹ C be moving in the +x- axis and the charge B = 60.0 * 10⁻⁹ C be moving in the -x-axis.
Electric field, E = kQ/r² where k is a constant = 9.0 * 10⁹ N.m²/C², Q = quantity of charge, r = distance of separation
In the given question,r = 30.0 cm = 0.03 m; the midway point between A and B = 0.03/2 = 0.015 m
Electric field due to charge A
Ea = +(9.0 * 10⁹ N.m²/C² * 30.0 * 10⁻⁹ ) / ( 0.015 m)²
Ea = +1.8 * 10⁴ N/C
Electric field due to charge B
Eb = -(9.0 * 10⁹ N.m²/C² * 60.0 * 10⁻⁹ ) / ( 0.015 m)²
Eb = -3.6 * 10⁴ N/C
The resultant electric field E = Ea + Eb
E = (+1.8 * 10⁴ + -3.6 * 10⁴) N/C
E = -1.8 * 10⁴ N/C
Therefore, the electric field at a point midway between the two charges, E = -1.8 * 10⁴ N/C
You may look at what group they are in
Group
1A=Group 1
2A = Group 2
3A = Group 13
4A= Group 14
5A=Group 15
6A=Group 16
7A=Group 17
The #A tells you how many valence electrons there are by the # before A. Such as Chlorine, which is in 7A, so therefore has 7 valence electrons.