1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
11

A can, containing only air, has its lid tightly screwed on and is left in strong sunlight

Physics
1 answer:
allsm [11]3 years ago
3 0

Answer:

Because everyone knows that when you increase temperature activity withn molecules increases they will collide more making the can probably explode

You might be interested in
A record is dropped vertically onto a freely rotating (undriven) turntable. Frictional forces act to bring the record and turnta
alexgriva [62]

Answer:

The loss of initial Kinetic energy = 37.88 %

Explanation:

Given:

Rotational inertia of the turntable = I_t

Rotational inertia (I_r) of the record = 0.61\times I_t

According to the question:

<em>Frictional forces act to bring the record and turntable to a common angular speed.</em>

So,angular momentum will be conserved as it is an inelastic collision.

Considering the initial and final angular velocity of the turn table as  \omega _i\  ,\  \omega_f respectively.

Note :

Angular momentum (L) = Product of moment of inertia  (I)  and angular velocity (\omega) .  

Lets say,

⇒ initial angular momentum = final angular momentum

⇒  L_i=L_f

⇒ (I_t)\times \omega_i = (I_t+I_r)\times \omega_f

⇒ \omega _f=\frac{I_t}{I_t+I_r} \times (\omega_i) ...equation (i)

Now we will find the ratio of the Kinetic energies.

⇒ K_i=\frac{I_t\times \omega_i^2}{2}       ⇒ K_f=\frac{(I_r+I_t)\times \omega_f^2}{2}

Their ratios:

⇒ \frac{K_f}{K_i} =\frac{\frac{(I_t+I_r)\times \omega_f^2}{2} }{\frac{I_t\times \omega_i^2}{2} }    

⇒ \frac{K_f}{K_i} = {\frac{(I_t+I_r)\times \omega_f^2}{2} } \times {\frac{2}{I_t\times \omega_i^2}}

Plugging the values of  \omega _f^2 as \omega _f^2 =(\frac{I_t}{I_t+I_r} \times \omega_i\ )^2 from equation (i) in the ratios of the Kinetic energies.

⇒ \frac{K_f}{K_i} =\frac{(I_t+I_r)\times \frac{(I_t)^2}{(I_t+I_r)^2} \times \omega_i^2}{I_t\times \omega_i^2} =\frac{(I_t)^2}{(I_t+I_r)}\times \frac{1}{I_t}=\frac{I_t}{I_t+I_r}

Now,

The Kinetic energy lost in fraction can be written as:

⇒ \frac{K_f-K_i}{K_i}

Now re-arranging the terms.

\frac{K_f-K_i}{K_i}  =(\frac{K_f}{K_i} -1)= \frac{I_t}{I_t+I_r} -1=\frac{I_t-I_t-I_r}{I_t+I_r} =\frac{-I_r}{(I_t+I_r)}

Plugging the values of  I_r and I_t .

⇒ \frac{K_f}{K_i} = \frac{-0.61I_t}{0.61I_t+I_t} =\frac{-0.61}{1.61} =-0.3788

To find the percentage we have to multiply it with 100 and here negative means for loss of Kinetic energy.

⇒ \frac{K_f}{K_i} = =-0.3788\times 100= 37.88

So the percentage of the initial Kinetic energy lost is 37.88

4 0
3 years ago
What is the total energy of a particle with a rest mass of 1 gram moving with half the speed of light? 1 eV = 1.6 x 10^-19 J. An
GREYUIT [131]

Answer:

6.5 x 10^32 eV

Explanation:

mass of particle, mo = 1 g = 0.001 kg

velocity of particle, v = half of velocity of light = c / 2

c = 3 x 10^8 m/s

Energy associated to the particle

E = γ mo c^2

E=\frac{m_{0}c^}2}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

E=\frac{m_{0}c^}2}{\sqrt{1-\frac{c^{2}}{4c^{2}}}}

E=\frac{2m_{0}c^}2}{\sqrt{3}}

E=\frac{2\times0.001\times9\times10^{16}}{1.732}

E=1.04\times10^{14}J

Convert Joule into eV

1 eV = 1.6 x 10^-19 J

So, E=\frac{1.04\times10^{14}}{1.6\times10^{-19}}=6.5\times10^{32}eV

4 0
3 years ago
A football is place kicked with a velocity having a vertical component of 12 m/s and a horizontal component of 6 m/s. Find the r
SSSSS [86.1K]

The velocity is given by:

V = √(Vx²+Vy²)

V = velocity, Vx = horizontal velocity, Vy = vertical velocity

Given values:

Vx = 6m/s, Vy = 12m/s

Plug in and solve for V:

V = √(6²+12²)

V = 13.42m/s

Now find the direction:

θ = tan⁻¹(Vy/Vx)

θ = angle of velocity off horizontal, Vy = vertical velocity, Vx = horizontal velocity

Given values:

Vx = 6m/s, Vy = 12m/s

Plug in and solve for θ:

θ = tan⁻¹(12/6)

θ = 63.4°

The resultant velocity is 13.42m/s at an angle of 63.4° off the horizontal.

6 0
4 years ago
Does plants have prokaryotic cells?
vova2212 [387]
No they have eukaryotic cells
7 0
3 years ago
Read 2 more answers
(???) Is iz allergic to peanut butter jigglys, I JIGGLE IN THE WIND!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Vadim26 [7]
Uh are u okay? G tell ur parents i-
7 0
3 years ago
Other questions:
  • Match the correct term with each part of the wave
    7·1 answer
  • A phase change is an example of a (option 1) Nuclear Change (option 2) Physical change (option 3) chemical change (option 4) cov
    9·2 answers
  • If a ball is given a push so that it has an initial velocity of 5 m/s down a certain inclined plane, then the distance it has ro
    5·1 answer
  • The planet whose distance from the sun equals 1 <br> a.u. is: venus earth mars jupiter
    7·2 answers
  • A certain part of a flat screen TV has a thickness of 150 nanometers. How<br> many meters is this?
    13·1 answer
  • A.) If its booster rockets accelerate the space shuttle at 15m/s2, how high will it be one minute after launch?
    6·1 answer
  • A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound
    14·1 answer
  • I have a test for my finals can y’all help me?
    6·1 answer
  • A football is thrown due north across a 40 meter river and it takes 2 seconds to cover that distance.
    10·1 answer
  • A Man is pulling a trolley on a horizontal road with a force of 200N making 30° with the road . Find the horizontal and vertical
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!