The balanced chemical equation for the formation ammonia is
N2(g) + 3H2(g) ----> 2NH3(g) .
The balanced chemical equations explains that the same number of each element exist as reactants and products. The coefficients in a balanced equation must be the simplest whole number ratio. Mass is always conserved in chemical reactions.
For the formation of ammonia, the chemical equation is
N2(g) + H2(g) ----> NH3(g)
Balancing the chemical reaction, we can write,
N2(g) + 3H2(g) ----> 2NH3(g) .
This equation shows two nitrogen entering the reaction together and two hydrogens entering the reaction together. Since NH3 is multiplied by a coefficient of 2 there are now 2 nitrogen and 6 hydrogens. The 6 hydrogens come from the 2 multiplied by the subscript of 3. This is the balanced chemical reaction.
To learn more about Balanced chemical equation please visit:
brainly.com/question/14072552
#SPJ4
Answer:
0.006342moles
Explanation:
1000ml of NaOH contain 0.151moles
42ml of NaOH contain (42*0.151)/1000 moles
=0.006342moles
To calculate the moles of AgNO3 in a solution, we need to know the volume and concentration of the solution.
Moles of AgNO3 = Volume of AgNO3 solution (L) * concentration of AgNO3 solution (M or mole/L) = 1.50 L * 0.050 M = 0.075 mole.
So 0.075 moles of AgNO3 are present in 1.50 L of a 0.050 M solution.
Answer:
pH = 12.80
[H3O+] = 1.58 * 10^-13 M
[OH-] = 0.063 M
Explanation:
Step 1: Data given
pOH = 1.20
Temperature = 25.0 °C
Step 2: Calulate pH
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 1.20 = 12.80
Step 3: Calculate hydronium ion concentration
pH = -log[H+] = -log[H3O+]
12.80 = -log[H3O+]
10^-12.80 = [H3O+] = 1.58 * 10^-13 M
Step 4: Calculate the hydroxide ion concentration
pOH = 1.20 = -log [OH-]
10^-1.20 = [OH-] = 0.063M
Step 5: Control [H3O+] and [OH-]
[H3O+]*[OH-] = 1* 10^-14
1.58 *10^-13 * 0.063 = 1* 10^-14
Answer:
Pb(NO₃)₂ + Na₂CrO₄ —> PbCrO₄ + 2NaNO₃
The coefficients are: 1, 1, 1, 2
Explanation:
Pb(NO₃)₂ + Na₂CrO₄ —> PbCrO₄ + NaNO₃
The above equation can be balance as follow:
Pb(NO₃)₂ + Na₂CrO₄ —> PbCrO₄ + NaNO₃
There are 2 atoms of Na on the left side and 1 atom on the right side. It can be balance by writing 2 before NaNO₃ as shown below:
Pb(NO₃)₂ + Na₂CrO₄ —> PbCrO₄ + 2NaNO₃
Now the equation is balanced.
The coefficients are: 1, 1, 1, 2