1.Strong basses dissociates into ions almost 100%.
But weak basses partially dissociates into ions.
2.Strong basses has pH value smaller but closer to 14 and weak basses has pH value greater but cloaer to 7.
3.strong basses ate highly reactive whereas weak basses are less reactive.
Answer:- 
Explanations:- The solution we have is a buffer solution and we know that a buffer solution resists a change in its pH if a strong acid or base is added to it.
Here, the buffer solution we have is of a weak base and it's conjugate acid. So, a strong acid(nitric acid) is added to this buffer then it reacts with the base present in the buffer so that the acid could be neutralized. This is called buffer action.
The net ionic equation is written as:

Note that
is a strong acid and nitrate ion is the spectator ion so it is not included in the net ionic equation.
Answer:
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Explanation:
As we know
1 liter = 1000 grams
2H2 + O2 --> 2H2O
Weight of H2 molecule = 2.016 g/mol
Weight of water = 18.01 gram /l
2 mole of oxygen react with 2 mole of H2
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Answer:
Alpha is when you are the leader of the pack. Beta is the weaker but can become alpha by killing th ealpha.
Explanation:
Answer : The mass of of water present in the jar is, 298.79 g
Solution : Given,
Mass of barium nitrate = 27 g
The solubility of barium nitrate at
is 9.02 gram per 100 ml of water.
As, 9.02 gram of barium nitrate present in 100 ml of water
So, 27 gram of barium nitrate present in
of water
The volume of water is 299.33 ml.
As we know that the density of water at
is 0.9982 g/ml
Now we have to calculate the mass of water.


Therefore, the mass of of water present in the jar is, 298.79 g